373 research outputs found
Baboon-to-human liver transplantation
Our ability to control both the cellular and humoral components of xenograft rejection in laboratory experiments, together with an organ shortage that has placed limits on clinical transplantation services, prompted us to undertake a liver transplantation from a baboon to a 35-year-old man with B virus-associated chronic active hepatitis and human immunodeficiency virus infection. Liver replacement was performed according to conventional surgical techniques. Immunosuppression was with the FK 506-prednisone-prostaglandin regimen used routinely for hepatic allotransplantation, to which a daily non-myelotoxic dose of cyclophosphamide was added. During 70 days of survival, there was little evidence of hepatic rejection by biochemical monitoring or histopathological examination. Products of hepatic synthesis, including clotting factors, became those of the baboon liver with no obvious adverse effects. Death followed a cerebral and subarachnoid haemorrhage that was caused by an angioinvasive aspergillus infection. However, the underlying cause of death was widespread biliary sludge that formed in the biliary tree despite a seemingly satisfactory choledochojejunostomy. During life and in necropsy samples, there was evidence of the chimerism that we believe is integral to the acceptance of both xenografts and allografts. Our experience has shown the feasibility of controlling the rejection of the baboon liver xenograft in a human recipient. The biliary stasis that was the beginning of lethal infectious complications may be correctable by modifications of surgical technique. In further trials, the error of over-immunosuppression should be avoidable. © 1993
Branes on Generalized Calibrated Submanifolds
We extend previous results on generalized calibrations to describe
supersymmetric branes in supergravity backgrounds with diverse fields turned
on, and provide several new classes of examples. As an important application,
we show that supersymmetric D-branes in compactifications with field strength
fluxes, and on SU(3)-structure spaces, wrap generalized calibrated
submanifolds, defined by simple conditions in terms of the underlying globally
defined, but non-closed, 2- and 3-forms. We provide examples where the
geometric moduli of D-branes (for instance D7-branes in 3-form flux
configurations) are lifted by the generalized calibration condition. In
addition, we describe supersymmetric D6-branes on generalized calibrated
3-submanifolds of half-flat manifolds, which provide the mirror of B-type
D-branes in IIB CY compactifications with 3-form fluxes. Supersymmetric sets of
such D-branes carrying no homology charges are mirror to supersymmetric sets of
D-branes which are homologically non-trivial, but trivial in K-theory. As an
additional application, we describe models with chiral gauge sectors, realized
in terms of generalized calibrated brane box configurations of NS- and
D5-branes, which are supersymmetric but carry no charges, so that no
orientifold planes are required in the compactification.Comment: 40 pages, 3 figures, references adde
Mirror Symmetry and a Flop
By applying mirror symmetry to D-branes in a Calabi-Yau geometry we shed
light on a flop in M-theory relevant for large dualities in supersymmetric gauge theories. Furthermore, we derive superpotential for
M-theory on corresponding manifolds for all A-D-E cases. This provides an
effective method for geometric engineering of gauge theories for
which mirror symmetry gives exact information about vacuum geometry. We also
find a number of interesting dual descriptions.Comment: Identification of parameters as well as the computation of the
superpotential is extended to all A-D-E cases. Additional references are also
include
Adding flavor to AdS/CFT
Coupling fundamental quarks to QCD in the dual string representation
corresponds to adding the open string sector. Flavors therefore should be
represented by space-time filling D-branes in the dual 5d closed string
background. This requires several interesting properties of D-branes in AdS.
D-branes have to be able to end in thin air in order to account for massive
quarks, which only live in the UV region. They must come in distinct sets,
representing the chiral global symmetry, with a bifundamental field playing the
role of the chiral condensate. We show that these expectations are born out in
several supersymmetric examples. To analyze most of these properties it is not
necessary to go beyond the probe limit in which one neglects the backreaction
of the flavor D-branes.Comment: 14 pages, LaTeX; references adde
Adding flavour to the Polchinski-Strassler background
As an extension of holography with flavour, we analyze in detail the
embedding of a D7-brane probe into the Polchinski-Strassler gravity background,
in which the breaking of conformal symmetry is induced by a 3-form flux G_3.
This corresponds to giving masses to the adjoint chiral multiplets. We consider
the N=2 supersymmetric case in which one of the adjoint chiral multiplets is
kept massless while the masses of the other two are equal. This setup requires
a generalization of the known expressions for the backreaction of G_3 in the
case of three equal masses to generic mass values. We work to second order in
the masses to obtain the embedding of D7-brane probes in the background. At
this order, the 2-form potentials corresponding to the background flux induce
an 8-form potential which couples to the worldvolume of the D7-branes. We show
that the embeddings preserve an SU(2) x SU(2) symmetry. We study possible
embeddings both analytically in a particular approximation, as well as
numerically. The embeddings preserve supersymmetry, as we investigate using the
approach of holographic renormalization. The meson spectrum associated to one
of the embeddings found reflects the presence of the adjoint masses by
displaying a mass gap.Comment: LaTeX, 50 pages, 9 figure
Baryonic Condensates on the Conifold
We provide new evidence for the gauge/string duality between the baryonic
branch of the cascading SU(k(M+1)) \times SU(kM) gauge theory and a family of
type IIB flux backgrounds based on warped products of the deformed conifold and
R^{3,1}. We show that a Euclidean D5-brane wrapping all six deformed conifold
directions can be used to measure the baryon expectation values, and present
arguments based on kappa-symmetry and the equations of motion that identify the
gauge bundles required to ensure worldvolume supersymmetry of this object.
Furthermore, we investigate its coupling to the pseudoscalar and scalar modes
associated with the phase and magnitude, respectively, of the baryon
expectation value. We find that these massless modes perturb the
Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way
consistent with our identification of the baryonic condensates. We match the
scaling dimension of the baryon operators computed from the D5-brane action
with that found in the cascading gauge theory. We also derive and numerically
evaluate an expression that describes the variation of the baryon expectation
values along the supergravity dual of the baryonic branch.Comment: 34 pages, 1 figure; v2 typos corrected, references added; v3 added
comment on \kappa-symmetry of Euclidean D5-brane, published in JHE
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓
A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at √s=7 TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101 TeV/c2 and MLQ(B0→e±μ∓)>126 TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
- …