106 research outputs found
25-Hydroxyvitamin D and pre-clinical alterations in inflammatory and hemostatic markers: a cross sectional analysis in the 1958 British Birth Cohort
BACKGROUND: Vitamin D deficiency has been suggested as a cardiovascular risk factor, but little is known about underlying mechanisms or associations with inflammatory or hemostatic markers. Our aim was to investigate the association between 25-hydroxyvitamin D [25(OH)D, a measure for vitamin D status] concentrations with pre-clinical variations in markers of inflammation and hemostasis. METHODOLOGY/PRINCIPAL FINDINGS: Serum concentrations of 25(OH)D, C-reactive protein (CRP), fibrinogen, D-dimer, tissue plasminogen activator (tPA) antigen, and von Willebrand factor (vWF) were measured in a large population based study of British whites (aged 45 y). Participants for the current investigation were restricted to individuals free of drug treated cardiovascular disease (n = 6538). Adjusted for sex and month, 25(OH)D was inversely associated with all outcomes (p or =75 nmol/l compared to < 25 nmol/l. D-dimer concentrations were lower for participants with 25(OH)D 50-90 nmol/l compared to others (quadratic term p = 0.01). We also examined seasonal variation in hemostatic and inflammatory markers, and evaluated 25(OH)D contribution to the observed patterns using mediation models. TPA concentrations varied by season (p = 0.02), and much of this pattern was related to fluctuations in 25(OH)D concentrations (p < or =0.001). Some evidence of a seasonal variation was observed also for fibrinogen, D-dimer and vWF (p < 0.05 for all), with 25(OH)D mediating some of the pattern for fibrinogen and D-dimer, but not vWF. CONCLUSIONS: Current vitamin D status was associated with tPA concentrations, and to a lesser degree with fibrinogen and D-dimer, suggesting that vitamin D status/intake may be important for maintaining antithrombotic homeostasi
Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk:a large Mendelian randomisation study
Background: Whilst observational studies establish that lower plasma 25-hydroxyvitamin D (25-OHD) levels are associated with higher risk of colorectal cancer (CRC), establishing causality has proven challenging. Since vitamin D is modifiable, these observations have substantial clinical and public health implications. Indeed, many health agencies already recommend supplemental vitamin D. Here, we explore causality in a large Mendelian randomisation (MR) study using an improved genetic instrument for circulating 25-OHD. Methods: We developed a weighted genetic score for circulating 25-OHD using six genetic variants that we recently reported to be associated with circulating 25-OHD in a large genome-wide association study (GWAS) meta-analysis. Using this score as instrumental variable in MR analyses, we sought to determine whether circulating 25-OHD is causally linked with CRC risk We conducted MR analysis using individual-level data from 10,725 CRC cases and 30,794 controls (Scotland, UK Biobank and Croatia). We then applied estimates from meta-analysis of 11 GWAS of CRC risk (18,967 cases; 48,168 controls) in a summary statistics MR approach. Results: The new genetic score for 25-OHD was strongly associated with measured plasma 25-OHD levels in 2821 healthy Scottish controls (P = 1.47 x 10(-11)), improving upon previous genetic instruments (F-statistic 46.0 vs. 13.0). However, individual-level MR revealed no association between 25-OHD score and CRC risk (OR 1.03/unit log-transformed circulating 25-OHD, 95% CI 0.51-2.07, P= 0.93). Similarly, we found no evidence for a causal relationship between 25-OHD and CRC risk using summary statistics MR analysis (OR 0.91, 95% CI 0.69-1.19, P= 0.48). Conclusions: Despite the scale of this study and employing an improved score capturing more of the genetic contribution to circulating 25-OHD, we found no evidence for a causal relationship between circulating 25-OHD and CRC risk Although the magnitude of effect for vitamin D suggested by observational studies can confidently be excluded, smaller effects sizes and non-linear relationships remain plausible. Circulating vitamin D may be a CRC biomarker, but a causal effect on CRC risk remains unproven
Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium
AbstractObservational studies on smoking and risk of hay fever and asthma have shown inconsistent results. However, observational studies may be biased by confounding and reverse causation. Mendelian randomization uses genetic variants as markers of exposures to examine causal effects. We examined the causal effect of smoking on hay fever and asthma by using the smoking-associated single nucleotide polymorphism (SNP) rs16969968/rs1051730. We included 231,020 participants from 22 population-based studies. Observational analyses showed that current vs never smokers had lower risk of hay fever (odds ratio (OR) = 0·68, 95% confidence interval (CI): 0·61, 0·76; P < 0·001) and allergic sensitization (OR = 0·74, 95% CI: 0·64, 0·86; P < 0·001), but similar asthma risk (OR = 1·00, 95% CI: 0·91, 1·09; P = 0·967). Mendelian randomization analyses in current smokers showed a slightly lower risk of hay fever (OR = 0·958, 95% CI: 0·920, 0·998; P = 0·041), a lower risk of allergic sensitization (OR = 0·92, 95% CI: 0·84, 1·02; P = 0·117), but higher risk of asthma (OR = 1·06, 95% CI: 1·01, 1·11; P = 0·020) per smoking-increasing allele. Our results suggest that smoking may be causally related to a higher risk of asthma and a slightly lower risk of hay fever. However, the adverse events associated with smoking limit its clinical significance.</jats:p
Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics
Funding Information: Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611–10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union’s Seventh Framework Programme (FP/2007– 2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611–10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics– Canadian Institute of Health Research (CIHR) [MFH]; CIHR— Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw–VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010–2011 PRIN funds of the University of Ferrara—Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli—and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, ‘5 per mille’ contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4–2007-201413 [L.M.]; ESRC (RES-060–23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NF-SI-0611–10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Funding Information: We are extremely grateful to the participants and families who contributed to all of the studies and the teams of investigators involved in each one. These include interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. This research has been conducted using the UK Biobank Resource (Application numbers 7036 and 12703). For additional study-specific acknowledgements, please see Supplementary Material. Conflict of Interest statement. D.A.L. has received support from Roche Diagnostics and Medtronic for biomarker research unrelated to the work presented here. Funding Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611-10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611-10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics-Canadian Institute of Health Research (CIHR) [MFH]; CIHR-Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw-VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010-2011 PRIN funds of the University of Ferrara-Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli-and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, '5 per mille' contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4-2007-201413 [L.M.]; ESRC (RES-060-23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NFSI-0611-10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Publisher Copyright: © The Author(s) 2018.Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.Peer reviewe
Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children
The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268)
Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes MellitusClinical Perspective
Background—Implications of different adiposity measures on cardiovascular disease aetiology remain unclear. In this paper we quantify and contrast causal associations of central adiposity (waist:hip ratio adjusted for BMI (WHRadjBMI)) and general adiposity (body mass index (BMI)) with cardiometabolic disease. Methods—97 independent single nucleotide polymorphisms (SNPs) for BMI and 49 SNPs for WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies supplemented with CHD data from CARDIoGRAMplusC4D (combined total 66,842 cases), stroke from METASTROKE (12,389 ischaemic stroke cases), type 2 diabetes (T2D) from DIAGRAM (34,840 cases), and lipids from GLGC (213,500 participants) consortia. Primary outcomes were CHD, T2D, and major stroke subtypes; secondary analyses included 18 cardiometabolic traits. Results—Each one standard deviation (SD) higher WHRadjBMI (1SD~0.08 units) associated with a 48% excess risk of CHD (odds ratio [OR] for CHD: 1.48; 95%CI: 1.28-1.71), similar to findings for BMI (1SD~4.6kg/m2; OR for CHD: 1.36; 95%CI: 1.22-1.52). Only WHRadjBMI increased risk of ischaemic stroke (OR 1.32; 95%CI 1.03-1.70). For T2D, both measures had large effects: OR 1.82 (95%CI 1.38-2.42) and OR 1.98 (95%CI 1.41-2.78) per 1SD higher WHRadjBMI and BMI respectively. Both WHRadjBMI and BMI were associated with higher left ventricular hypertrophy, glycaemic traits, interleukin-6, and circulating lipids. WHRadjBMI was also associated with higher carotid intima-media thickness (39%; 95%CI: 9%-77% per 1SD). Conclusions—Both general and central adiposity have causal effects on CHD and T2D. Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity on health should include measures of central and general adiposity
- …