95 research outputs found
An Initial Survey of White Dwarfs in the Sloan Digital Sky Survey
An initial assessment is made of white dwarf and hot subdwarf stars observed
in the Sloan Digital Sky Survey. In a small area of sky (190 square degrees),
observed much like the full survey will be, 269 white dwarfs and 56 hot
subdwarfs are identified spectroscopically where only 44 white dwarfs and 5 hot
subdwarfs were known previously. Most are ordinary DA (hydrogen atmosphere) and
DB (helium) types. In addition, in the full survey to date, a number of WDs
have been found with uncommon spectral types. Among these are blue DQ stars
displaying lines of atomic carbon; red DQ stars showing molecular bands of C_2
with a wide variety of strengths; DZ stars where Ca and occasionally Mg, Na,
and/or Fe lines are detected; and magnetic WDs with a wide range of magnetic
field strengths in DA, DB, DQ, and (probably) DZ spectral types. Photometry
alone allows identification of stars hotter than 12000 K, and the density of
these stars for 15<g<20 is found to be ~2.2 deg^{-2} at Galactic latitudes
29-62 deg. Spectra are obtained for roughly half of these hot stars. The
spectra show that, for 15<g<17, 40% of hot stars are WDs and the fraction of
WDs rises to ~90% at g=20. The remainder are hot sdB and sdO stars.Comment: Accepted for AJ; 43 pages, including 12 figures and 5 table
The Milky Way Tomography With SDSS. III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator
The Milky Way Tomography with SDSS: III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence
stars with r<20 and proper-motion measurements derived from SDSS and POSS
astrometry, including ~170,000 stars with radial-velocity measurements from the
SDSS spectroscopic survey. Distances to stars are determined using a
photometric parallax relation, covering a distance range from ~100 pc to 10 kpc
over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find
that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the
rotational velocity for disk stars smoothly decreases, and all three components
of the velocity dispersion increase, with distance from the Galactic plane. In
contrast, the velocity ellipsoid for halo stars is aligned with a spherical
coordinate system and appears to be spatially invariant within the probed
volume. The velocity distribution of nearby ( kpc) K/M stars is complex,
and cannot be described by a standard Schwarzschild ellipsoid. For stars in a
distance-limited subsample of stars (<100 pc), we detect a multimodal velocity
distribution consistent with that seen by HIPPARCOS. This strong
non-Gaussianity significantly affects the measurements of the velocity
ellipsoid tilt and vertex deviation when using the Schwarzschild approximation.
We develop and test a simple descriptive model for the overall kinematic
behavior that captures these features over most of the probed volume, and can
be used to search for substructure in kinematic and metallicity space. We use
this model to predict further improvements in kinematic mapping of the Galaxy
expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap
Characterization of M,L and T dwarfs in the Sloan Digital Sky Survey
An extensive sample of M, L and T dwarfs identified in the Sloan Digital Sky
Survey (SDSS) has been compiled. The sample of 718 dwarfs includes 677 new
objects (629 M dwarfs, 48 L dwarfs) together with 41 that have been previously
published. All new objects and some of the previously published ones have new
optical spectra obtained either with the SDSS spectrographs or with the Apache
Point Observatory 3.5m ARC telescope. Spectral types and SDSS colors are
available for all objects; approximately 35% also have near-infrared magnitudes
measured by 2MASS or on the Mauna Kea system. We use this sample to
characterize the color--spectral type and color--color relations of late type
dwarfs in the SDSS filters, and to derive spectroscopic and photometric
parallax relations for use in future studies of the luminosity and mass
functions based on SDSS data. We find that the (i*-z*) and (i*-J) colors
provide good spectral type and absolute magnitude (M_i*) estimates for M and L
dwarfs. Our distance estimates for the current sample indicate that SDSS is
finding early M dwarfs out to about 1.5 kpc, L dwarfs to approximately 100 pc
and T dwarfs to near 20 pc. The T dwarf photometric data show large scatter and
are therefore less reliable for spectral type and distance estimation.Comment: 46 pages, 14 figures (24 pages of figures), Accepted for publication
in the Astronomical Journa
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Vertical integration for full outsourcing: growth and internationalization of a portuguese packaging firm
Based on a case study of a Portuguese packaging firm, this paper examines how vertical integration of the supplier serves as a vehicle for the full outsourcing of the client firms' needs in a solution that reduces transaction costs, favors specialization, and permits small and mediumsized firms to develop competencies that may be exploited in a wide array of projects. Vertical integration by the supplier (a governance decision) is a strategic response to changes in the sourcing model of the clients. Client-supplier relationships have inter-spatial and inter-temporal value that surpasses spot market exchanges
Recommended from our members
Clinical and laboratory phenotypes in juvenile-onset Systemic Lupus Erythematosus across ethnicities in the UK.
Funder: LUPUS UKSystemic lupus erythematosus (SLE) is a systemic autoimmune/inflammatory disease. Patients diagnosed with juvenile-onset SLE (jSLE), when compared to individuals with adult-onset SLE, develop more severe organ involvement, increased disease activity and greater tissue and organ damage. In adult-onset SLE, clinical characteristics, pathomechanisms, disease progression and outcomes do not only vary between individuals and age groups, but also ethnicities. However, in children and young people, the influence of ethnicity on disease onset, phenotype and outcome has not been investigated in detail. In this study, we investigated clinical and laboratory characteristics in pediatric SLE patients from different ethnic backgrounds (White Caucasian, Asian, Black African/Caribbean) accessing data from a national cohort of jSLE patients (the UK JSLE Cohort Study). Among jSLE patients in the UK, ethnicity affects both the disease's clinical course and outcomes. At diagnosis, Black African/Caribbean jSLE patients show more "classical" laboratory and clinical features when compared to White Caucasian or Asian patients. Black African/Caribbean jSLE patients exhibit more renal involvement and more frequently receive cyclophosphamide and rituximab. Studies targeting ethnicity-specific contributors to disease expression and phenotypes are necessary to improve our pathophysiological understanding, diagnosis and treatment of jSLE
Clinical and laboratory phenotypes in juvenile-onset Systemic Lupus Erythematosus across ethnicities in the UK.
Funder: LUPUS UKSystemic lupus erythematosus (SLE) is a systemic autoimmune/inflammatory disease. Patients diagnosed with juvenile-onset SLE (jSLE), when compared to individuals with adult-onset SLE, develop more severe organ involvement, increased disease activity and greater tissue and organ damage. In adult-onset SLE, clinical characteristics, pathomechanisms, disease progression and outcomes do not only vary between individuals and age groups, but also ethnicities. However, in children and young people, the influence of ethnicity on disease onset, phenotype and outcome has not been investigated in detail. In this study, we investigated clinical and laboratory characteristics in pediatric SLE patients from different ethnic backgrounds (White Caucasian, Asian, Black African/Caribbean) accessing data from a national cohort of jSLE patients (the UK JSLE Cohort Study). Among jSLE patients in the UK, ethnicity affects both the disease's clinical course and outcomes. At diagnosis, Black African/Caribbean jSLE patients show more "classical" laboratory and clinical features when compared to White Caucasian or Asian patients. Black African/Caribbean jSLE patients exhibit more renal involvement and more frequently receive cyclophosphamide and rituximab. Studies targeting ethnicity-specific contributors to disease expression and phenotypes are necessary to improve our pathophysiological understanding, diagnosis and treatment of jSLE
The Milky Way Tomography with SDSS: II. Stellar Metallicity
Using effective temperature and metallicity derived from SDSS spectra for
~60,000 F and G type main sequence stars (0.2<g-r<0.6), we develop polynomial
models for estimating these parameters from the SDSS u-g and g-r colors. We
apply this method to SDSS photometric data for about 2 million F/G stars and
measure the unbiased metallicity distribution for a complete volume-limited
sample of stars at distances between 500 pc and 8 kpc. The metallicity
distribution can be exquisitely modeled using two components with a spatially
varying number ratio, that correspond to disk and halo. The two components also
possess the kinematics expected for disk and halo stars. The metallicity of the
halo component is spatially invariant, while the median disk metallicity
smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to
-0.8 beyond several kpc. The absence of a correlation between metallicity and
kinematics for disk stars is in a conflict with the traditional decomposition
in terms of thin and thick disks. We detect coherent substructures in the
kinematics--metallicity space, such as the Monoceros stream, which rotates
faster than the LSR, and has a median metallicity of [Fe/H]=-0.96, with an rms
scatter of only ~0.15 dex. We extrapolate our results to the performance
expected from the Large Synoptic Survey Telescope (LSST) and estimate that the
LSST will obtain metallicity measurements accurate to 0.2 dex or better, with
proper motion measurements accurate to ~0.2 mas/yr, for about 200 million F/G
dwarf stars within a distance limit of ~100 kpc (g<23.5). [abridged]Comment: 40 pages, 21 figures, emulateApJ style, accepted to ApJ, high
resolution figures are available from
http://www.astro.washington.edu/ivezic/sdss/mw/astroph0804.385
The Third Data Release of the Sloan Digital Sky Survey
This paper describes the Third Data Release of the Sloan Digital Sky Survey
(SDSS). This release, containing data taken up through June 2003, includes
imaging data in five bands over 5282 deg^2, photometric and astrometric
catalogs of the 141 million objects detected in these imaging data, and spectra
of 528,640 objects selected over 4188 deg^2. The pipelines analyzing both
images and spectroscopy are unchanged from those used in our Second Data
Release.Comment: 14 pages, including 2 postscript figures. Submitted to AJ. Data
available at http://www.sdss.org/dr
- …