2,736 research outputs found

    Some doubts on the validity of the foreground Galactic contribution subtraction from microwave anisotropies

    Full text link
    The Galactic foreground contamination in CMBR anisotropies, especially from the dust component, is not easily separable from the cosmological or extragalactic component. In this paper, some doubts will be raised concerning the validity of the methods used to date to remove Galactic dust emission in order to show that none of them achieves its goal. First, I review the recent bibliography on the topic and discuss critically the methods of foreground subtraction: the cross-correlation with templates, analysis assuming the spectral shape of the Galactic components, the "maximum entropy method", "internal linear combination", and "wavelet-based high resolution fitting of internal templates". Second, I analyse the galactic latitude dependence from WMAP data. The frequency dependence is discussed with the data in the available literature. The result is that all methods of subtracting the Galactic contamination are inaccurate. The galactic latitude dependence analysis or the frequency dependence of the anisotropies in the range 50-250 GHz put a constraint on the maximum Galactic contribution in the power spectrum to be less than a ~10% (68% C. L.) for a ~1 degree scale, and possibly higher for larger scales. The origin of most of the signal in the CMBR anisotropies is not Galactic. In any case, the subtraction of the Galaxy is not accurate enough to allow a "precision Cosmology"; other sources of contamination (extragalactic, solar system) are also present.Comment: 24 pages, 1 figure, accepted to be published in J. Astrophys. Ast

    Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    Full text link
    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HDThis work was funded by the Instituto de Salud Carlos III/CIBERNED (to J.R. Naranjo, B. Mellström, and A. Rábano), FISS-RIC RD12/0042/0019 (to C. Valenzuela), Madrid regional government/Neurodegmodels (to J.R. Naranjo), MINECO grants SAF2010-21784 and SAF2014-53412-R (to J.R. Naranjo), SAF2012-32209 (to M. Gutierrez-Rodriguez), SAF2010-14916 and SAF2013-45800-R (to C. Valenzuela), and a grant from the Swedish Research Council (J.Y. Li

    Response-adapted treatment with rituximab, bendamustine, mitoxantrone, and dexamethasone followed by rituximab maintenance in patients with relapsed or refractory follicular lymphoma after first-line immunochemotherapy: Results of the RBMDGELTAMO08 phase II trial

    Get PDF
    Background Consensus is lacking regarding the optimal salvage therapy for patients with follicular lymphoma who relapse after or are refractory to immunochemotherapy. Methods This phase II trial evaluated the efficacy and safety of response-adapted therapy with rituximab, bendamustine, mitoxantrone, and dexamethasone (RBMD) in follicular lymphoma patients who relapsed after or were refractory to first-line immunochemotherapy. Sixty patients received three treatment cycles, and depending on their response received an additional one (complete/unconfirmed complete response) or three (partial response) cycles. Patients who responded to induction received rituximab maintenance therapy for 2 years. Results Thirty-three (55%) and 42 (70%) patients achieved complete/unconfirmed complete response after three cycles and on completing induction therapy (4-6 cycles), respectively (final overall response rate, 88.3%). Median progression-free survival was 56.4 months (median follow-up, 28.3 months; 95% CI, 15.6-51.2). Overall survival was not reached. Progression-free survival did not differ between patients who received four vs six cycles (P = .6665), nor between patients who did/did not receive rituximab maintenance after first-line therapy (P = .5790). Median progression-free survival in the 10 refractory patients was 25.5 months (95% CI, 0.6-N/A) and was longer in patients who had shown progression of disease after 24 months of first-line therapy (median, 56.4 months; 95% CI, 19.8-56.4) than in those who showed early progression (median, 42.31 months; 95% CI, 24.41-NA) (P = .4258). Thirty-six (60%) patients had grade 3/4 neutropenia. Grade 3/4 febrile neutropenia and infection were recorded during induction (4/60 [6.7%] and 5/60 [8.3%] patients, respectively) and maintenance (2/43 [4.5%] and 4/43 [9.1%] patients, respectively). Conclusions This response-adapted treatment with RBMD followed by rituximab maintenance is an effective and well-tolerated salvage treatment for relapsed/refractory follicular lymphoma following first-line immunochemotherapy

    The Dark Energy Spectroscopic Instrument: one-dimensional power spectrum from first Ly α forest samples with Fast Fourier Transform

    Get PDF
    We present the one-dimensional Ly α forest power spectrum measurement using the first data provided by the Dark Energy Spectroscopic Instrument (DESI). The data sample comprises 26 330 quasar spectra, at redshift z > 2.1, contained in the DESI Early Data Release and the first 2 months of the main survey. We employ a Fast Fourier Transform (FFT) estimator and compare the resulting power spectrum to an alternative likelihood-based method in a companion paper. We investigate methodological and instrumental contaminants associated with the new DESI instrument, applying techniques similar to previous Sloan Digital Sky Survey (SDSS) measurements. We use synthetic data based on lognormal approximation to validate and correct our measurement. We compare our resulting power spectrum with previous SDSS and high-resolution measurements. With relatively small number statistics, we successfully perform the FFT measurement, which is already competitive in terms of the scale range. At the end of the DESI survey, we expect a five times larger Ly α forest sample than SDSS, providing an unprecedented precise one-dimensional power spectrum measurement

    Direct measurement of the mass difference between top and antitop quarks

    Get PDF
    We present a direct measurement of the mass difference between top and antitop quarks (dm) in lepton+jets top-antitop final states using the "matrix element" method. The purity of the lepton+jets sample is enhanced for top-antitop events by identifying at least one of the jet as originating from a b quark. The analyzed data correspond to 3.6 fb-1 of proton-antiproton collisions at 1.96 TeV acquired by D0 in Run II of the Fermilab Tevatron Collider. The combination of the e+jets and mu+jets channels yields dm = 0.8 +/- 1.8 (stat) +/- 0.5 (syst) GeV, which is in agreement with the standard model expectation of no mass difference.Comment: submitted to Phys. Rev.

    Precise measurement of the top quark mass in the dilepton channel at D0

    Get PDF
    We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.Comment: 7 pages, 4 figure

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Zgamma production and limits on anomalous ZZgamma and Zgammagamma couplings in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a measurement of ppbar->Zgamma->ll+gamma (l = e, mu) production with a data sample corresponding to an integrated luminosity of 6.2 fb^{-1} collected by the D0 detector at the Fermilab Tevatron ppbar Collider. The results of the electron and muon channels are combined, and we measure the total production cross section and the differential cross section dsigma/dp_T^gamma, where p_T^gamma is the momentum of the photon in the plane transverse to the beamline. The results obtained are consistent with the standard model predictions from next-to-leading order calculations. We use the transverse momentum spectrum of the photon to place limits on anomalous ZZgamma and Zgammagamma couplings
    corecore