1,832 research outputs found

    An Exponential Reduction in Training Data Sizes for Machine Learning Derived Entanglement Witnesses

    Full text link
    We propose a support vector machine (SVM) based approach for generating an entanglement witness that requires exponentially less training data than previously proposed methods. SVMs generate hyperplanes represented by a weighted sum of expectation values of local observables whose coefficients are optimized to sum to a positive number for all separable states and a negative number for as many entangled states as possible near a specific target state. Previous SVM-based approaches for entanglement witness generation used large amounts of randomly generated separable states to perform training, a task with considerable computational overhead. Here, we propose a method for orienting the witness hyperplane using only the significantly smaller set of states consisting of the eigenstates of the generalized Pauli matrices and a set of entangled states near the target entangled states. With the orientation of the witness hyperplane set by the SVM, we tune the plane's placement using a differential program that ensures perfect classification accuracy on a limited test set as well as maximal noise tolerance. For NN qubits, the SVM portion of this approach requires only O(6N)O(6^N) training states, whereas an existing method needs O(24N)O(2^{4^N}). We use this method to construct witnesses of 4 and 5 qubit GHZ states with coefficients agreeing with stabilizer formalism witnesses to within 6.5 percent and 1 percent, respectively. We also use the same training states to generate novel 4 and 5 qubit W state witnesses. Finally, we computationally verify these witnesses on small test sets and propose methods for further verification.Comment: 22 Pages, 3 Figure

    Multifractal characterization of stochastic resonance

    Full text link
    We use a multifractal formalism to study the effect of stochastic resonance in a noisy bistable system driven by various input signals. To characterize the response of a stochastic bistable system we introduce a new measure based on the calculation of a singularity spectrum for a return time sequence. We use wavelet transform modulus maxima method for the singularity spectrum computations. It is shown that the degree of multifractality defined as a width of singularity spectrum can be successfully used as a measure of complexity both in the case of periodic and aperiodic (stochastic or chaotic) input signals. We show that in the case of periodic driving force singularity spectrum can change its structure qualitatively becoming monofractal in the regime of stochastic synchronization. This fact allows us to consider the degree of multifractality as a new measure of stochastic synchronization also. Moreover, our calculations have shown that the effect of stochastic resonance can be catched by this measure even from a very short return time sequence. We use also the proposed approach to characterize the noise-enhanced dynamics of a coupled stochastic neurons model.Comment: 10 pages, 21 EPS-figures, RevTe

    Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas

    Get PDF
    Anti-malarial drugs can make a significant contribution to the control of malaria in endemic areas when used for prevention as well as for treatment. Chemoprophylaxis is effective in preventing deaths and morbidity from malaria, but it is difficult to sustain for prolonged periods, may interfere with the development of naturally acquired immunity and will facilitate the emergence and spread of drug resistant strains if applied to a whole community. However, chemoprophylaxis targeted to groups at high risk, such as pregnant women, or to periods of the year when the risk from malaria is greatest, can be an effective and cost effective malaria control tool and has fewer drawbacks. Intermittent preventive treatment, which involves administration of anti-malarials at fixed time points, usually when a subject is already in contact with the health services, for example attendance at an antenatal or vaccination clinic, is less demanding of resources than chemoprophylaxis and is now recommended for the prevention of malaria in pregnant women and infants resident in areas with medium or high levels of malaria transmission. Intermittent preventive treatment in older children, probably equivalent to targeted chemoprophylaxis, is also highly effective but requires the establishment of a specific delivery system. Recent studies have shown that community volunteers can effectively fill this role. Mass drug administration probably has little role to play in control of mortality and morbidity from malaria but may have an important role in the final stages of an elimination campaign

    Modelling the impact of intermittent preventive treatment for malaria on selection pressure for drug resistance

    Get PDF
    BACKGROUND: Intermittent preventive treatment (IPT) is a promising intervention for malaria control, although there are concerns about its impact on drug resistance. METHODS: The key model inputs are age-specific values for a) baseline anti-malarial dosing rate, b) parasite prevalence, and c) proportion of those treated with anti-malarials (outside IPT) who are infected. These are used to estimate the immediate effect of IPT on the genetic coefficient of selection (s). The scenarios modelled were year round IPT to infants in rural southern Tanzania, and three doses at monthly intervals of seasonal IPT in Senegal. RESULTS: In the simulated Tanzanian setting, the model suggests a high selection pressure for drug resistance, but that IPTi would only increase this by a small amount (4.4%). The percent change in s is larger if parasites are more concentrated in infants, or if baseline drug dosing is less common or less specific. If children aged up to five years are included in the Tanzanian scenario then the predicted increase in s rises to 31%. The Senegalese seasonal IPT scenario, in children up to five years, results in a predicted increase in s of 16%. CONCLUSION: There is a risk that the useful life of drugs will be shortened if IPT is implemented over a wide childhood age range. On the other hand, IPT delivered only to infants is unlikely to appreciably shorten the useful life of the drug used

    A novel organic-rich meteoritic clast from the outer solar system

    Get PDF
    The Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolitic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20μm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10μm) OM aggregate in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM aggregate has sp2 dominated hydrocarbon networks with a lower abundance of heteroatoms than in IOM from primitive (CI,CM,CR) carbonaceous chondrites, and thus it is distinguished from most of the OM in carbonaceous meteorites. The OM aggregate has high D/H and 15N/14N ratios (δD=2,370±74‰ and δ15N=696±100‰), suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus, the high D/H ratio must have been preserved during the extensive late-stage aqueous processing. It indicates that both the OM precursors and the water had high D/H ratios. Combined with 16O-poor nature of the clast, the OM aggregate and the clast are unique among known chondrite groups. We further propose that the clast possibly originated from D/P type asteroids or trans-Neptunian Objects

    The Impact of IPTi and IPTc Interventions on Malaria Clinical Burden – In Silico Perspectives

    Get PDF
    Background: Clinical management of malaria is a major health issue in sub-Saharan Africa. New strategies based on intermittent preventive treatment (IPT) can tackle disease burden by simultaneously reducing frequency of infections and life-threatening illness in infants (IPTi) and children (IPTc), while allowing for immunity to build up. However, concerns as to whether immunity develops efficiently in treated individuals, and whether there is a rebound effect after treatment is halted, have made it imperative to define the effects that IPTi and IPTc exert on the clinical malaria scenario. Methods and Findings: Here, we simulate several schemes of intervention under different transmission settings, while varying immunity build up assumptions. Our model predicts that infection risk and effectiveness of acquisition of clinical immunity under prophylactic effect are associated to intervention impact during treatment and follow-up periods. These effects vary across regions of different endemicity and are highly correlated with the interplay between the timing of interventions in age and the age dependent risk of acquiring an infection. However, even when significant rebound effects are predicted to occur, the overall intervention impact is positive. Conclusions: IPTi is predicted to have minimal impact on the acquisition of clinical immunity, since it does not interfere with the occurrence of mild infections, thus failing to reduce the underlying force of infection. On the contrary, IPTc has

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore