2,304 research outputs found

    A transient third cranial nerve palsy as presenting sign of spontaneous intracranial hypotension

    Get PDF
    Spontaneous intracranial hypotension is an uncommon cause of sudden and persistent headache: associated symptoms are common, among which there are cranial nerve palsies, especially of the abducens nerve. We report a case of a 21-year-old man with a transient and isolated third nerve palsy due to spontaneous intracranial hypotension. To our knowledge, there are only few reports in the literature of such association

    An Analysis of Private School Closings

    Get PDF
    We add to the small literature on private school supply by exploring exits of K-12 private schools. We find that the closure of private schools is not an infrequent event, and use national survey data from the National Center for Education Statistics to study closures of private schools. We assume that the probability of an exit is a function of excess supply of private schools over the demand, as well as the school's characteristics such as age, size, and religious affiliation. Our empirical results generally support the implications of the model. Working Paper 07-0

    Orthostatic headache and bilateral abducens palsy secondary to spontaneous intracranial hypotension

    Get PDF
    Spontaneous intracranial hypotension (SIH) is a well-documented syndrome characterized typically by a benign, self-limited course. Patients typically present with postural or exertional headaches that can be temporarily relieved by lying in a supine or recumbent position. A 35-year-old Caucasian male suffered orthostatic headache that developed to a bilateral abducens palsy. We ordered relative rest and the patient improved and completely recovered after 3 months. Although SIH is considered as a benign and self limited process it could also be associated with disabling complications. We should be aware of the possible complications and inform our patients. SIH can present with headache and bilateral abducens palsy even when the headache is improving

    Xanthogranuloma of the intrasellar region presenting in pituitary dysfunction: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Differentiation of cystic mass lesions of the sellar and parasellar regions may pose a diagnostic dilemma for physicians, neurosurgeons, radiologists and pathologists involved in treating patients with these entities. A considerable number of tumors previously identified as craniopharyngiomas may, in fact, have been xanthogranulomas. We report a case of pituitary dysfunction caused by xanthogranuloma of the intrasellar region.</p> <p>Case presentation</p> <p>A 47-year-old man of Japanese descent presented to our institution with a tumor located exclusively in the intrasellar region which manifested as severe hypopituitarism. MRI revealed a clearly defined intrasellar mass that was heterogeneously hyperintense on T1-weighted images and markedly hypointense on T2-weighted images. We preoperatively diagnosed the patient with Rathke's cleft cyst or non-functioning pituitary adenoma. Although the tumor was completely removed using a transsphenoidal approach, the improvement of the patient's endocrine function was marginal, and continued endocrine replacement therapy was needed. Postoperatively, a histological examination revealed the tumor to be a xanthogranuloma of the intrasellar region. His visual field defects and headache improved.</p> <p>Conclusion</p> <p>Because diagnosis depends on surgical intervention and xanthogranulomas of the intrasellar region are very rare, the natural history of xanthogranuloma is still unknown. Therefore, this entity is difficult to diagnose preoperatively. We suggest that xanthogranuloma should be included in the differential diagnosis, even in the case of sellar lesions, to formulate appropriate postoperative management and improve endocrine outcomes.</p

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore