159 research outputs found

    Gender and Leadership Aspiration

    Get PDF
    Summary The aim of this dissertation is to examine gender differences in leadership aspiration. Although some important work regarding gender-specific aspiration has been done already, conditions fostering leadership aspiration – particularly among women – are not completely understood. Therefore, the focus of this dissertation is on assessing the potential impact of the organizational environment, including formal and informal elements, as well as relevant actors and their respective impact on female leadership aspiration. The four empirical chapters of this dissertation advance our understanding which conditions are of importance in terms of stimulating women’s leadership aspiration. Firstly, we directed our attention towards examining the role of the individual’s supervisor. Particularly the supervisor is important for women as women have less access to mentors or informal networks. Our results show the importance of supervisor gender for female leadership aspiration as women reporting to a female supervisor report higher levels of support and control and as a result display higher leadership aspiration. In addition to looking at the supervisor, we also focused on work life initiatives, being initiatives targeted at helping employees to balance their work and private life by facilitating their integration. Understanding whether these initiatives have an impact is essential as women are still faced with more domestic responsibilities than men. Our findings show that although work life initiatives are positively related to the aspiration to lead for both genders, they have a greater influence on women’s aspiration. Apart from looking at the supervisor and formal initiatives, we were also interested to understand how informal elements within the organizational environment impact leadership aspiration. Therefore, we assessed the impact of cooperative climate, being defined as a climate in which team spirit and cooperation among employees are pronounced. We predicted and showed that men and women are more responsive to different elements within such a cooperative climate, mapping to their gender-specific disposal to different self-construals. As women are more disposed to a relational self-construal we predicted and showed that their leadership aspiration is more responsive to cooperative interpersonal relationships, i.e. with their coworkers, within the organization. Contrary to women, men are more disposed to a collective self-construal, defining themselves in terms of group membership, and consequently we hypothesized and verified that their leadership aspiration is more effected by a cooperative individual relationship with the organization. Eventually, we were also interested to understand whether the interplay between the organization and the individual plays an important role in influencing leadership aspiration. Therefore we zoomed in on organizational identification, being the individual’s perception of considering him-/ herself and the organization itself as an entity, and examined whether this construct features an impact on leadership aspiration. As predicted we showed that high organizational identification is linked to female leadership aspiration. In sum, our findings highlight different important precursors of women’s leadership aspiration within the organizational environment and point to interesting avenues for future research and beneficial implications for practitioners alike striving towards increasing female leadership aspiration

    Group 2 Innate Lymphoid Cells in Respiratory Allergic Inflammation

    Get PDF
    Millions of people worldwide are suffering from allergic inflammatory airway disorders. These conditions are regarded as a consequence of multiple imbalanced immune events resulting in an inadequate response with the exact underlying mechanisms still being a subject of ongoing research. Several cell populations have been proposed to be involved but it is becoming increasingly evident that group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and orchestration of respiratory allergic inflammation. ILC2s are important mediators of inflammation but also tissue remodeling by secreting large amounts of signature cytokines within a short time period. Thereby, ILC2s instruct innate but also adaptive immune responses. Here, we will discuss the recent literature on allergic inflammation of the respiratory tract with a focus on ILC2 biology. Furthermore, we will highlight different therapeutic strategies to treat pulmonary allergic inflammation and their potential influence on ILC2 function as well as discuss the perspective of using human ILC2s for diagnostic purposes

    Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering

    Get PDF
    In this study, we integrated different calcium sources into sol-gel hybrid glass scaffolds with the aim of producing implants with long-lasting calcium release while maintaining mechanical strength of the implant. Calcium(II)-release was used to introduce bioactivity to the material and eventually support implant integration into a bone tissue defect. Tetraethyl orthosilicate (TEOS) derived silica sols were cross-linked with an ethoxysilylated 4-armed macromer, pentaerythritol ethoxylate and processed into macroporous scaffolds with defined pore structure by indirect rapid prototyping. Triethyl phosphate (TEP) was shown to function as silica sol solvent. In a first approach, we investigated the integration of 1 to 10% CaCl2 in order to test the hypothesis that small CaCl2 amounts can be physically entrapped and slowly released from hybrid glass scaffolds. With 5 and 10% CaCl2 we observed an extensive burst release, whereas slightly improved release profiles were found for lower Calcium(II) contents. In contrast, introduction of melt-derived bioactive 45S5 glass microparticles (BG-MP) into the hybrid glass scaffolds as another Calcium(II) source led to an approximately linear release of Calcium(II) in Tris(hydroxymethyl)aminomethane (TRIS) buffer over 12 weeks. pH increase caused by BG-MP could be controlled by their amount integrated into the scaffolds. Compression strength remained unchanged compared to scaffolds without BG-MP. In cell culture medium as well as in simulated body fluid, we observed a rapid formation of a carbonated hydroxyapatite layer on BG-MP containing scaffolds. However, this mineral layer consumed the released Calcium(II) ions and prevented an additional increase in Calcium(II) concentration in the cell culture medium. Cell culture studies on the different scaffolds with osteoblast-like SaOS-2 cells as well as bone marrow derived mesenchymal stem cells (hMSC) did not show any advantages concerning osteogenic differentiation due to the integration of BG-MP into the scaffolds. Nonetheless, via the formation of a hydroxyapatite layer and the ability to control the pH increase, we speculate that implant integration in vivo and bone regeneration may benefit from this concept

    Diet-Induced and Age-Related Changes in the Quadriceps Muscle: MRI and MRS in a Rat Model of Sarcopenia

    Get PDF
    Background: Knowledge about the molecular pathomechanisms of sarcopenia is still sparse, especially with regard to nutritional risk factors and the subtype of sarcopenic obesity. Objective: The aim of this study was to characterize diet-induced and age-related changes on the quality and quantity of the quadriceps muscle in a rat model of sarcopenia by different magnetic resonance (MR) techniques. Methods: A total of 36 6-month-old male Sprague-Dawley rats were randomly subdivided into 2 groups and received either a high-fat diet (HFD) or a control diet (CD). At the age of 16 months, 15 HFD and 18 CD rats underwent MR at 1.5 T. T1-weighted images as well as T2 relaxation time maps were acquired perpendicular to the long axis of the quadriceps muscles. Maximum cross-sectional area (CSA) of the quadriceps muscle was measured on T1-weighted images, and T2 relaxation times of muscle were assessed in a region without visible intramuscular fat (T2lean muscle) and across the complete CSA (T2muscle). Furthermore, 1H-MR spectroscopy was performed to evaluate the relative lipid content of the quadriceps muscles. These measurements were repeated 5 months later in the surviving 8 HFD and 14 CD rats. Results: HFD rats revealed significantly decreased CSA and CSA per body weight (BW) as well as prolonged T2 relaxation times of muscle. A higher weight gain (upper tertile during the first 6 months of diet in CD rats) resulted in a significant change of T2muscle, but had no relevant impact on CSA. Advancing age up to 21 months led to significantly decreased BW, CSA and CSA/BW, significantly prolonged T2muscle and T2lean muscle and enlarged lipid content in the quadriceps muscle. Conclusions: In an experimental setting a chronically fat-enriched diet was shown to have a relevant and age-associated influence on both muscle quantity and quality. By translational means the employed MR techniques give rise to the possibility of an early detection and noninvasive quantification of sarcopenia in humans, which is highly relevant for the field of geriatrics

    Методы и механизмы геттерирования кремниевых структур в производстве интегральных микросхем

    Get PDF
    Увеличение степени интеграции элементной базы предъявляет все более жесткие требования к уменьшению концентрации загрязняющих примесей и окислительных дефектов упаковки в исходных кремниевых пластинах с ее сохранением в технологическом цикле изготовления ИМС. Это обуславливает высокую актуальность применения геттерирования в современной технологии микроэлектроники. В статье рассмотрены существующие методы геттерирования кремниевых пластин и механизмы их протекания.Збільшення ступеня інтеграції елементної бази пред'являє все більш жорсткі вимоги до зменшення концентрації забруднюючих домішок та окислювальних дефектів упаковки у вихідних кремнієвих пластинах за її збереження у технологічному циклі виготовлення ІМС. Це обумовлює високу актуальність застосування гетерування в сучасній технології мікроелектроніки. Розглянуто існуючі методи гетерування кремнієвих пластин та розглянуто механізми їх перебігу.Increasing the degree of integration of hardware components imposes more stringent requirements for the reduction of the concentration of contaminants and oxidation stacking faults in the original silicon wafers with its preservation in the IC manufacturing process cycle. This causes high relevance of the application of gettering in modern microelectronic technology. The existing methods of silicon wafers gettering and the mechanisms of their occurrence are considered

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    CXCR4/CXCL12 Participate in Extravasation of Metastasizing Breast Cancer Cells within the Liver in a Rat Model

    Get PDF
    INTRODUCTION: Organ-specific composition of extracellular matrix proteins (ECM) is a determinant of metastatic host organ involvement. The chemokine CXCL12 and its receptor CXCR4 play important roles in the colonization of human breast cancer cells to their metastatic target organs. In this study, we investigated the effects of chemokine stimulation on adhesion and migration of different human breast cancer cell lines in vivo and in vitro with particular focus on the liver as a major metastatic site in breast cancer. METHODS: Time lapse microscopy, in vitro adhesion and migration assays were performed under CXCL12 stimulation. Activation of small GTPases showed chemokine receptor signalling dependence from ECM components. The initial events of hepatic colonisation of MDA-MB-231 and MDA-MB-468 cells were investigated by intravital microscopy of the liver in a rat model and under shRNA inhibition of CXCR4. RESULTS: In vitro, stimulation with CXCL12 induced increased chemotactic cell motility (p,0.05). This effect was dependent on adhesive substrates (type I collagen, fibronectin and laminin) and induced different responses in small GTPases, such as RhoA and Rac-1 activation, and changes in cell morphology. In addition, binding to various ECM components caused redistribution of chemokine receptors at tumour cell surfaces. In vivo, blocking CXCR4 decreased extravasation of highly metastatic MDA-MB-231 cells (p < 0.05), but initial cell adhesion within the liver sinusoids was not affected. In contrast, the less metastatic MDA-MB-468 cells showed reduced cell adhesion but similar migration within the hepatic microcirculation. CONCLUSION: Chemokine-induced extravasation of breast cancer cells along specific ECM components appears to be an important regulator but not a rate-limiting factor of their metastatic organ colonization.Claudia Wendel, André Hemping-Bovenkerk, Julia Krasnyanska, Sören Torge Mees, Marina Kochetkova, Sandra Stoeppeler and Jörg Haie

    Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training

    Get PDF
    Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A) listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production

    The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

    Get PDF
    Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture

    Two Distinct Triatoma dimidiata (Latreille, 1811) Taxa Are Found in Sympatry in Guatemala and Mexico

    Get PDF
    Approximately 10 million people are infected with Trypanosoma cruzi, the causative agent of Chagas disease, which remains the most serious parasitic disease in the Americas. Most people are infected via triatomine vectors. Transmission has been largely halted in South America in areas with predominantly domestic vectors. However, one of the main Chagas vectors in Mesoamerica, Triatoma dimidiata, poses special challenges to control due to its diversity across its large geographic range (from Mexico into northern South America), and peridomestic and sylvatic populations that repopulate houses following pesticide treatment. Recent evidence suggests T. dimidiata may be a complex of species, perhaps including cryptic species; taxonomic ambiguity which confounds control. The nuclear sequence of the internal transcribed spacer 2 (ITS2) of the ribosomal DNA and the mitochondrial cytochrome b (mt cyt b) gene were used to analyze the taxonomy of T. dimidiata from southern Mexico throughout Central America. ITS2 sequence divides T. dimidiata into four taxa. The first three are found mostly localized to specific geographic regions with some overlap: (1) southern Mexico and Guatemala (Group 2); (2) Guatemala, Honduras, El Salvador, Nicaragua, and Costa Rica (Group 1A); (3) and Panama (Group 1B). We extend ITS2 Group 1A south into Costa Rica, Group 2 into southern Guatemala and show the first information on isolates in Belize, identifying Groups 2 and 3 in that country. The fourth group (Group 3), a potential cryptic species, is dispersed across parts of Mexico, Guatemala, and Belize. We show it exists in sympatry with other groups in Peten, Guatemala, and Yucatan, Mexico. Mitochondrial cyt b data supports this putative cryptic species in sympatry with others. However, unlike the clear distinction of the remaining groups by ITS2, the remaining groups are not separated by mt cyt b. This work contributes to an understanding of the taxonomy and population subdivision of T. dimidiata, essential for designing effective control strategies
    corecore