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Millions of people worldwide are suffering from allergic inflammatory airway disorders.

These conditions are regarded as a consequence of multiple imbalanced immune events

resulting in an inadequate response with the exact underlying mechanisms still being a

subject of ongoing research. Several cell populations have been proposed to be involved

but it is becoming increasingly evident that group 2 innate lymphoid cells (ILC2s) play

a key role in the initiation and orchestration of respiratory allergic inflammation. ILC2s

are important mediators of inflammation but also tissue remodeling by secreting large

amounts of signature cytokines within a short time period. Thereby, ILC2s instruct innate

but also adaptive immune responses. Here, we will discuss the recent literature on allergic

inflammation of the respiratory tract with a focus on ILC2 biology. Furthermore, we will

highlight different therapeutic strategies to treat pulmonary allergic inflammation and their

potential influence on ILC2 function as well as discuss the perspective of using human

ILC2s for diagnostic purposes.

Keywords: group 2 innate lymphoid cells (ILC2s), mucosal immunity, respiratory tract, allergic inflammation,
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INTRODUCTION

Respiratory allergic inflammatory conditions such as asthma and allergic rhinitis (hay fever) are
affecting millions of people globally (1, 2). Importantly, the prevalence of these non-communicable
disorders is rapidly increasing in contrast to communicable diseases of the respiratory tract, which
are on the decline (1). Due to their widespread morbidity, they represent a substantial social as
well as economic burden (3). The skew toward a type 2 immune response is often an important
characteristic of these chronic conditions that involve both innate and adaptive branches of the
immune system (4). In addition to T helper 2 (TH2) cells of the adaptive immune system, group 2
innate lymphoid cells (ILC2s) are critical in instructing a strong type 2 immune response (5). ILC2s
belong to the group of innate lymphoid cells (ILCs) that provide host defense against infectious
agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue
repair, particularly at mucosal barriers. Taking the newest nomenclature of ILCs into account,
the ILC family is comprised of five subsets including Natural Killer (NK) cells, lymphoid tissue
inducer cells (LTi cells) as well as the three helper ILC members. While LTi cells are key drivers
of lymphoid organogenesis and NK cells are important to fight off viral infections, helper ILCs are
regarded as the innate counterpart of TH cells but lack the surface expression of common adaptive
lineagemarkers as well as specific antigen receptors (6, 7). These helper ILCs, namely, ILC1s, ILC2s,
and ILC3s are defined by their effector cytokine profile and transcription factor expression (8).
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FIGURE 1 | Characteristics of ILC1s, ILC2s, and ILC3s. ILC1s, ILC2s, and

ILC3s are characterized by expression of their key transcription factors and

signature cytokines: ILC1s depend on T-bet and produce IFNγ, ILC2s on

Gata3 and Rorα and secrete IL-4, IL-5, IL-13 as well as amphiregulin while

ILC3s depend on Rorγt and release IL-17 and IL-22 upon activation.

The master transcription factors for the different helper subsets
are T-bet for ILC1, Gata3 and Rorα for ILC2s and RORγt for
ILC3s. Helper ILCs are important sources of innate effector
cytokines such as ILC1-derived IFNγ, ILC2-derived IL-4, IL-
5, IL-13, and amphiregulin (Areg) as well as ILC3-derived IL-
17 and IL-22 (Figure 1). ILC2s are innately committed to type
2 immunity which consequently puts them in the spotlight
during the onset of an allergic immune response. ILC2s are
activated by local immune mediators, typically alarmins, and
are able to produce large amounts of signature cytokines within
a short period of time (9). Thereby, ILC2s can initiate and
amplify immune responses and are able to influence innate as
well as adaptive immunity by both their secreted cytokines and
through cell-cell interactions. Hence, ILC2s serve as an important
link between innate and adaptive effector branches of type 2
immunity. Depending on the tissue they reside in, ILC2s exhibit
slightly diverse profiles shaped by their microenvironment (10).
However, their specific characteristics such as their ability
to produce type 2 signature cytokines in a stark and fast
fashion remains unchanged. Since their detailed description in
2010 (11–13), our knowledge about this fascinating immune
population has steadily increased both in mouse models but
also, through applied research, in humans. In this review we will
provide a brief snapshot on our current knowledge of ILC2s in
mouse and human allergic respiratory inflammation. Moreover,
we will summarize experimental mouse models and discuss how
recent reports led to an improved understanding of therapeutic
strategies in human allergic respiratory diseases with the
focus on asthma.

ASTHMA – AN ALLERGIC RESPIRATORY
DISEASE

One of the most common human allergic diseases in the
respiratory tract is asthma. Importantly, asthma is no longer
considered to be one specific disease but more of an umbrella
term for chronic inflammation of the lower airways with
characteristics such as wheezing, bronchoconstriction and
shortness of breath (4, 14). The heterogeneity of asthma is
mirrored by different immune profiles. In general, asthma is
subdivided into type 2 and non-type 2 with further separation
of type 2 asthma in allergic or non-allergic asthma accompanied
with eosinophilia (14, 15). Non-type 2 (low) asthma is defined
as asthma without eosinophilia and with increased presence
of neutrophils and/or IL-17 producing cells. These different
asthma subtypes are termed endotypes for better classification
(16). Interestingly, although there are cases of asthma onset in
adulthood in a cohort of patients, most asthmatic individuals
develop the disease during childhood (17). However, the exact
mechanisms are still not completely understood. Different
secondary diseases are correlated with asthma such as allergic
rhinitis, chronic rhinosinusitis, and the development of nasal
polyps. To provide optimal care to asthmatic patients of all
different subgroups, a shift to a more personalized treatment
approach is in the focus of discussion. In this context, mouse
models of human allergic airway inflammation are an invaluable
tool to understand underlying mechanisms of disease. Common
allergens, including house dust mite (HDM) and papain can
trigger respiratory allergic inflammation in humans as well
as mice (18, 19), and mouse models can therefore be used
to recapitulate these immune responses in an experimental
system and thus aid in deciphering the underlying mechanism
and processes of allergic respiratory diseases. To increase our
knowledge of allergic lung inflammation, different experimental
mouse models can be applied. Allergens such as ovalbumin
(OVA), HDM, papain, fungal extracts, ILC2-eliciting cytokines
and combinations thereof are used to induce and mimic allergic
inflammation in the respiratory tract. The importance of ILC2s
in the onset of allergic airway inflammation is highlighted by
their detection in these experiments and thoroughly stratified
in Table 1.

ILC2S IN ALLERGIC INFLAMMATION OF
THE RESPIRATORY TRACT

Allergic respiratory diseases are characterized in general by a
dysregulated immune response targeting a harmless and non-
pathogenic allergen. Several immune populations participate in
an allergic respiratory disease including populations of the innate
as well as the adaptive immune system. Different subgroups of
T and B cells as well as eosinophils, basophils, NK cells and,
last but not least, ILC2s are major players. Although a direct
mechanistical link of ILC2s to asthma pathogenesis still needs
to be established in humans, an increasing body of evidence
supports an association of ILC2s with disease in asthmatic
patients. These include GWAS studies revealing several genes
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TABLE 1 | ILC2s in experimental mouse models of allergic airway inflammationa.

Model
Strain

background

Route ILC2 detection method Observations

References
i.n.

i.t.
i.p. Aerosol

Flow cytometry Histology
ILC2↑ EOS and/or Mucus and/or AHR

B and/or L and/or mLN L and/or mLN

A
e
ro
a
lle
rg
e
n
e
xp

o
su

re

House Dust

Mite (HDM)

D. pteronyssinus

C57BL/6 Very mild inflammation (20–22)

C57BL/6

BALB/c
(22–27)

C57BL/6

BALB/c
(21, 28)

Ovalbumin (OVA) C57BL/6

BALB/c

(21, 27, 29,

30)

Fungi Aspergillus C57BL/6 (31)

Ragweed Pollen BALB/c (30, 32)

Chitin C57BL/6J

BALB/c
(33, 34)

Fungi Alternaria C57BL/6

BALB/c

BALB/cByJ
(20, 35–48)

Papain protease C57BL/6

NOD-SCID

(24, 31, 49–

53)

C
yt
o
ki
n
e
e
xp

o
su

re

rIL-25 BALB/c

C57BL/6
Very mild inflammation (30)

BALB/c (21, 27, 29)

C57BL/c (23, 24, 45)

BALB/c

C57BL/6
(54, 55)

rIL-33 BALB/c

C57BL/6

(30, 33, 35,

38, 45, 56)

C57BL/6

BALB/c

BALB/cByJ

(21, 25, 27–

29, 31, 36,

37, 39, 41,

45, 49–51,

57, 58)

BALB/c

C57BL/6

C57BL/6JRJ

(52, 54, 55,

58, 59)

• Models dependent on TH2 cell response:

Aspergillus, HDM, OVA (22)

• Models independent of TH2 cell response: Chitin,

Papain, Alternaria, cytokine exposure (22)

aAHR, airway hyper–reactivity; BAL, bronchoalveolar lavage fluid; EOS, eosinophilia; i.n., intranasal; i.p., intraperitoneal; i.t., intratracheal; mLN, mediastinal lymph node; r, recombinant.

essential in ILC2 biology as susceptibility markers for human
asthma such as the ILC2-activating alarmin IL-33 and its cognate
receptor ST2 (IL1RL1) as well as the transcription factors GATA3
and RORα (57, 60, 61).

ILC2s are the predominant ILC population in the lung,
in contrast to other mucosal surfaces such as small intestine
and colon. However, the reason for this skewed distribution
is still not clear. ILC2s are activated mainly by the cytokines
interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin
(TSLP) in the lungs, however, ILC2s accumulate in tissues
independent of these signals and pulmonary ILC2s can also
be detected in triple knockout mice deficient in the TSLP
receptor, ST2, and IL-25 (10, 62). However, ILC2s show reduced
IL-5 reporter expression in lung, fat, and gut tissue, but not
in the skin indicating that TSLP, ST2, and IL-25 signaling is
indeed needed for the functional maintenance of ILC2s in the
local microenvironment of the lung (10). In addition to IL-5,

ILC2s commonly secrete IL-4, IL-9, IL-13, and amphiregulin.
IL-4 triggers the differentiation of TH2 cells and induces class
switching of B cells to IgE. IL-5 activates B cells and plays
a role in eosinophil homeostasis (63). IL-9 is needed by
ILC2s for their survival and maintenance (64, 65), and IL-
13 induces goblet cell hyperplasia and mucus secretion but
can also act on alveolar macrophages (13, 66) and initiate the
migration of dendritic cells to the mediastinal lymph nodes (49).
Moreover, ILC2s are able to serve as antigen presenting cells
for T cells by expressing MHCII (67), although this appears
to be less pronounced in the lungs compared to the gut
(67). Additional functional characteristics of pulmonary ILC2s
include their expression of Il5 as well as ST2 (IL-33R) at steady
state in contrast to intestinal ILC2s which express both IL-5
and IL-13 mRNA and mainly the IL-25 receptor chain (IL-
25RB) further demonstrating that ILC2s are imprinted by their
microenvironment (10, 63).
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Furthermore, ILC2s get support from basophil-derived IL-
4 (68), and T cell-derived IL-2 (56), thus, establishing a
quick but robust allergic reaction (Figure 2). In addition to
the typical type 2 cytokines, IL-17 secreting ILC2s have been
described, a cytokine known to be regulated by RORγt that
has been correlated to severe asthma phenotypes (69). However,
while one group reported IL-17 expression by KLRG1hiST2−

inflammatory ILC2s (iILC2s) in the lungs, which correlated with
their expression of RORγt (70) a more recent report showed
increased IL-17+ST2+ ILC2s (ILC217s) upon IL-33 or allergen
challenge, independently of RORγt expression (52, 70). Finally,
in line with their immunomodulatory potential, ILC2s can also
acquire a regulatory phenotype andmemory-like properties upon
IL-33 and IL-2 stimulation in vivo, decreasing the expression
of their pro-inflammatory repertoire as well as eosinophilic
recruitment and accumulation (71). Further studies on this
subset could certainly open up new venues in allergic disease
therapies. Overall, ILC2s are key in the initiation, amplification,
and modulation of type 2 immune responses in the respiratory
tract by exhibiting these fundamental characteristics.

Due to their scarcity and phenotypical heterogeneity in mice
and humans, the detection of ILC2s by flow cytometry requires
some considerations. ILC2s are characterized by the absence of
known lineage markers and antigen receptors as well as the
expression of surface markers CD45, CD25 (IL-2Rα), CD127
(IL-7Rα), and ST2 (IL-33R) in human asthma as well as in
rodent models of respiratory allergic inflammation. Interestingly,
CD127 low/negative ILC2s have also been reported in asthmatic
patients as well as in an allergic experimental mouse model
(72, 73). Of note, iILC2s show reduced CD127 expression upon
systemic challenge with IL-25 (70). Whether these ILC2s have
just downregulated the expression or endocytosed CD127 due to
strong activity still needs to be investigated. In addition, mouse
ILC2s are further identified by the surface expression of Thy1, a
marker that is not present on human ILC2s. Another difference
is the expression of CD161 by human ILC2s. The functions
of these two glycoproteins are still not completely understood.
Both mouse and human ILC2s can express the prostaglandin
receptor family member CRTH2. CRTH2 is important in the
migration of ILC2s and thereby expressed to a different extent

FIGURE 2 | Group 2 innate lymphoid cell (ILC2) stimulation by airway pathogens drives allergic respiratory inflammation. In response to allergens, fungi or viruses,

lung epithelial cells release alarmins IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) that induce expansion and cytokine production by ILC2s. Activated ILC2s

initiate an innate type 2 inflammatory response through production of IL-5, which induces eosinophilia, and IL-13, which promotes airway hyper-reactivity, goblet cell

hyperplasia, mucus production and fibrosis. B cells and basophils are stimulated to release IgE and IL-4, respectively, and ILC2-derived IL-9 acts in an autocrine

manner to prolong survival of ILC2s in the lung. Expression of MHCII enables ILC2 interaction with TH2 cells, which subsequently promote ILC2 function via T

cell-derived IL-2.
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depending on location (74). However, the detection of mouse
CRTH2 is limited by the availability of a specific detection
antibody (74, 75). Our current strategies to detect ILC2s are
largely based on surface receptors, which are actively used in an
immune response by the cell to sense its environment and act
accordingly. In addition, surface receptors and Gata3 are often
used in combination to detect human and murine ILC2s (76, 77).
The caveat with Gata3 is that ILC2s in the lungs are able to
downregulate Gata3 expression under specific conditions such
as viral (78), or helminth infections (70), however, under steady
state conditions Gata3 is a reliable marker for pulmonary ILC2s.

Interestingly, ILC2s are not a homogenous population and
several different subtypes of ILC2s have been reported at mucosal
surfaces (79), including the lungs (31, 70). Memory ILC2s can
be elicited upon repeated challenge of mice with IL-33, or
when using papain as an allergen (31), thereby intensifying
the immune response. Thus, ILC2s are specifically shaped by
their local microenvironment and are reported to exhibit a
sedentary lifestyle (45, 80). However, a subgroup of murine
ILC2s, intestinally-derived inflammatory ILC2s (iILC2s) are able
to traffic through the lymphatics and blood toward the lung to aid
in the local response to helminth infection or systemic challenge
with IL-25 (81). Moreover, the identification of circulating
multipotent ILC progenitors in peripheral blood in humans
indicates that ILC2 progenitors may be able to traffic to local
pools of tissue-resident cells and replenish them (82). Since
iILC2s are able to further differentiate into natural ILC2s (nILCs),
the ability to traffic might be limited to specific circumstances
and confined to not yet fully matured or differentiated ILC2
populations. However, additional studies are needed to pinpoint
the potential of ILC2s to migrate within the body. nILC2s, which
are present at steady state in the lungs and characterized by
their ST2 expression, are typically increased upon stimulation
with IL-33 (70). Both populations, iILC2s and memory ILC2s
are characterized by elevated expression of the IL-25 receptor in
the lungs (31, 70), however, it is still not completely understood
how similar the biology and function of both populations is. So
far, IL-25 receptor-expressing ILC2s have only been described
in the human skin (83), and it still needs to be determined
whether IL-25 receptor expression is present and regulated
in human ILC2s during respiratory inflammation. KLRG1 is
another commonly used marker to identify mature ILC2s in
both human and mouse lungs. However, its expression is
greatly influenced by androgens with ILC2s from male mice
exhibiting higher expression of KLRG1while female lungs harbor
significantly higher numbers of KLRG1− ILC2s promoting lung
inflammation (59, 84). The ligand for KLRG1 is E-cadherin and
ILC2s isolated from human skin were shown to be restrained
by this interaction (83). Testosterone can additionally regulate
ILC2s by controlling their response to IL-2 as well as by
the restraint of IL-5 and IL-13 production and thus resulting
in decreased pulmonary pathology upon Alternaria challenge
(42). In the same study, elevated levels of ILC2s in peripheral
blood of female asthma patients in comparison to male patients
have been reported which is especially interesting in the light
of the increased prevalence of asthma in women. The exact
role of androgens such as testosterone in asthma still needs

further investigation since testosterone is able to induce IL-
33 mRNA in mast cells (85), however, lower levels of IL-33
and TSLP have been detected in the bronchoalveolar lavage of
Alternaria challenged mice.

Insights into the function of ILC2s in allergic inflammation
has mainly been generated using experimental mouse models.
However, a substantial amount of reports provide evidence that
ILC2s are also key in human allergic respiratory inflammation.
Of note, the first reports on human ILC2s provided a detailed
description of ILC2s in polyp tissue of chronic rhinosinusitis
patients (75, 77). Moreover, increased levels and activity of
ILC2s have also been reported in asthmatic patients. ILC2s
could be detected in bronchoalveolar lavage, lung tissue,
sputum and blood of patients with respiratory inflammation.
Although the gating strategies of ILC2s slightly vary between the
distinct reports, all studies demonstrate expression of CD127 in
combination with CRTH2 and/or CD44 and ST2 on ILC2s. A
positive correlation of eosinophilia and ILC2s levels has been
further reported in human patients similar to the observation in
mouse respiratory inflammation (86, 87). Recent work opened
the discussion of functional redundancy of TH2 cells and ILC2s in
humans (88). However, even if this is the case, pulmonary ILC2s
have a critical function in the development of allergic diseases
being innately committed to type 2 immunity and strong and
immediate amplifiers of initial responses.

OBESITY-ASSOCIATED ASTHMA

The prevalence of both obesity and asthma has increased
drastically in recent years. Although asthma in obese patients
is characterized mainly as non-allergic with an increase in
neutrophils, eosinophils have been reported to be present in
elevated numbers in the lung tissue of obese asthma patients
as well (89). Of note, in addition to their mucosal location,
ILC2s were originally identified as fat-associated lymphoid
cluster (FALC) Lineage−ckit+Sca-1+ cells in the mesentery
(12). Here, adipocytes and endothelial cells within the adipose
tissue are sources of ILC2-activating IL-25 and IL-33 (90, 91).
ILC2s are able to maintain the metabolic status of healthy
adipose tissue by secreting IL-5 for eosinophil homeostasis,
IL-13 to trigger alternative macrophage differentiation and
methionine-enkephalin which directly acts on adipocytes and
induces beiging of fat (92). However, in obesity ILC2s are
decreased in adipose tissue and in ILC2-deficient mice, a high-
fat diet accelerates obesity and insulin resistance indicating that
ILC2s in adipose tissue are important for homeostasis. It thus
seems contrary at first to link obesity and asthma. However,
although obese mice have lower ILC2s and eosinophils in their
adipose tissue, the levels of these populations are increased
in the lungs in obese mice at steady state and upon allergen
challenge such as with HDM. Not only ILC2s but also ILC3s
are increased in the lungs of obese mice which can be enhanced
by ozone triggered IL-33 or Nlrp3 inflammasome induced IL-
1β, respectively (93, 94). It has been suggested that ILC2s and
eosinophils might migrate from adipose tissue into lung tissue
during obesity and thereby influence pulmonary immunity and
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may trigger asthma. This represents an interesting potential
mechanism but further research will be needed to fully support
this idea.

BIOMARKERS AND ASSESSMENT OF
SEVERITY OF ALLERGIC RESPIRATORY
DISEASES

Interestingly, in humans, an allergic response is provoked in
the skin as a first assessment of an allergic response in general
but also as a first evaluation of asthma. Different tests can be
used depending on the way of application using subcutaneous
injections or exposure to allergen by topical application with
the most common test in clinical practice still being the prick
test. It still needs to be determined to what extent and how
ILC2s directly contribute to the assessment of allergy via the
prick test. Upon external stimuli or cellular damage, IL-33 is
released from cells and engages ST2 on ILC2s but also on
TH2 cells, eosinophils, mast cells, and basophils, contributing to
cutaneous allergic inflammation with increased levels of local and
peripheral blood ILC2s, eosinophils, IgE, and histamine (95). IL-
33 can be released locally and systemically after mechanical skin
injury (i.e., scratching), promoting IgE-mediated degranulation
(96). Of note, ILC2s present in the skin can control mast cell
(MC) activity by direct interaction (97). Conversely, MC are
an important source of IL-33 in vivo, contributing to ILC2
activation and type 2 immune response in disease models of
multiple sclerosis (85), and helminth infection (98), a MC-
ILC2 crosstalk also occurs in the lung (99). It is not yet fully
understood how cutaneous antigen exposure could activate
ILC2s but it is conceivable that dysregulation between MC and
ILC2s could exacerbate the immune response during allergic
airway inflammation and anaphylactic reaction. Moreover, the
evaluation of the eosinophil count, as well as the level of IgE,
including allergen-specific IgE in blood, or less common in
sputum, is used to assess the grade of the allergic response. Type
2 signature cytokines (IL-4, IL-5, and IL-13) are used in addition
as biomarkers. However, to assess the severity of asthma, lung
function tests are routinely carried out in humans. Sequential
examinations are performed on the patient such as allergy tests
to pinpoint the responsible allergen(s), bronchial provocation
or exhaled nitric oxide tests; before formulating any therapeutic
recommendation (100). Since asthma and allergic inflammation
of the respiratory tract can have multiple underlying causes, the
aim is to personalize the treatment asmuch as possible depending
on the results of the examinations. Thus, achieving control is the
main objective currently proposed in asthma management where
pharmacological and non-pharmacological treatment is adjusted
in a continuous cycle that involves assessment, treatment and
review. In mouse models, experimentally-induced airway hyper-
reactivity is usually analyzed upon challenge with increasing
doses of inhaled methacholine. The concept of using ILC2
prevalence as a biomarker for diagnostic purposes in lung
disease is appealing. Screening of ILC2s as an early hierarchical
population might already indicate asthma susceptibility before
the start of symptoms or pathology in the lungs. However,

due to their high phenotypic diversity, ILC2 characterization in
different asthmatic subgroups and their comparison is necessary,
and even then, ILC2 level and functionality should be carefully
evaluated for each subgroup. Nevertheless, biomarkers and
the assessment of allergic respiratory diseases show overall
important similarities between rodent models of disease and
clinical practice.

EXPERIMENTAL AND THERAPEUTIC
STRATEGIES TO AMELIORATE
RESPIRATORY INFLAMMATION

Corticosteroids
In humans, as a first and often immediate treatment inhaled
corticosteroids are commonly used in both allergic and non-
allergic respiratory inflammation. Corticosteroids reduce the
general inflammation of the lung and provide relief of symptoms
for the patient (101), but can also cause adverse side effects
especially when given systemically in high doses and during long-
term treatment. Importantly, corticosteroids dampen the activity
of both mouse and human ILC2s (102). However, under specific
conditions, corticosteroids are less able to act on ILC2 activity.
This has been reported to be the case in situations of enhanced
STAT5 activation upon TSLP stimulation. This increased
activation of STAT5 by TSLP has been identified as a regulatory
mechanism in mice (102), was further confirmed in human
ILC2s (103) and helps to explain why not all asthma patients
respond to corticosteroid therapy. Corticosteroid resistance
can also occur in neutrophilic asthma. IL-17 contributes to
neutrophil accumulation in the lungs but also increases the
expression of the glucocorticoid receptor beta (GRβ) (104).
GRβ inhibits the activity of GRα by direct competition for
glucocorticoids. Increased expression of GRβ has been reported
on cell populations in glucocorticoid-resistant patients (105,
106), and is discussed to contribute to steroid resistance in
neutrophilic asthma (104). IL-17 can also be derived from
pulmonary iILC2s (70) as well as ILC217s, which were described
to be the main source of IL-17 in the lung after IL-33-induced
lung inflammation (52). However, if and which role ILC2s may
have in neutrophilic asthma still needs to be investigated.

Adrenergic Agonists (β2-Agonists)
Like corticosteroids, β2-agonists that act on β2-adrenergic
receptors are frequently used to treat asthmatic patients. A
recent report showed that both human and mouse ILC2s
express the β2AR (β2-adrenergic receptor) for epinephrine and
norepinephrine and that the use of an agonist during lung
inflammation in mice impaired ILC2 proliferation, cytokine
production and effector function (107). These findings highlight
the importance of ILC2s in integrating neuroimmune signals. In
humans, short acting β-agonists (SABA, e.g., Salbutamol) and
long acting β-agonists (LABA, e.g., Salmeterol) are routinely
used for asthma treatment. LABA is used in combination with
inhaled corticosteroids whereas SABA is also approved as a
monotherapy in mild asthma (108). Adverse effects of β2-
agonists have been reported and the discussion was stirred up
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upon the report of detrimental effects upon excessive Fenoterol
(SABA) treatment (long time and high dose) (109, 110). The
underlying mechanisms of these severe consequences are only
incompletely understood. However, the use of β2-agonists for
asthmatic patients under treatment is generally regarded as safe
and successful (101).

Lipid Mediators: Leukotrienes &
Prostaglandins
Bioactive lipidmediators are important regulators of ILC2s (111).
Indeed, leukotrienes (LTs) including cysteinyl LTs (CysLTs) are
generated by arachidonic acid metabolism and CysLTs have
been linked to the initiation of asthma and bronchoconstriction
since a long time (112). Leukotriene receptor antagonists such
as Montelukast, a CysLT1 receptor antagonist, are commonly
prescribed to improve asthma symptoms in humans (113). Both
mouse and human ILC2s have been reported to express CysLT
receptors and it was shown that CysLTs positively regulate ILC2
activation (47, 114–116).

In addition, Leukotriene B4 (LTB4) has also been linked to
asthma. LTB4 is a neutrophil chemoattractant in pulmonary
inflammation (117), and neutrophils can be increased during
the exacerbation phase of asthma (118). However, sputum
samples of asthmatic patients showed an increased level of
LTB4 which strikingly did not correlate with neutrophil levels
in the samples of the analyzed patients (119). The high affinity
receptor for LTB4, LTB4R1, has been reported on mouse ILC2s
but its presence and role in human ILC2s still needs to be
elucidated. Interestingly, LTB4 also plays an important role in the
development of insulin resistance in obese mice (120). However,
how and if ILC2s are involved in this context still needs to
be addressed.

Similar to LTs, prostaglandins are products of arachidonic
acid metabolism. As mentioned previously, human and mouse
ILC2s express the receptor for prostaglandin D2, CRTH2
(74, 75). CRTH2 plays a potent role in activation, migration
and cytokine release of TH2 cells and eosinophils. Curiously,
accumulation of pulmonary ILC2s is regulated via CRTH2
and differences in its expression on ILC2s have been reported
in inflamed pulmonary tissue (121). Use of monoclonal
antibodies against CRTH2 resulted in a reduction of CRTH2
expressing cells including ILC2s in mice (122). In addition
to its role in migration of ILC2s, PGD2 has been reported
to potentiate the action of ILC2s eliciting cytokines leading
to an increase in effector cytokine expression. Consequently,
small-molecules antagonists of the CRTH2 receptor, have
been promising in human trials for asthma patients (123–
126). One example is OC000459 which was reported to be
a safe and effective alternative treatment of eosinophilic
asthma improving lung function and asthma symptoms
(127, 128).

Signature Cytokines and IgE
Monoclonal antibodies are used to treat allergic respiratory
diseases such as asthma in humans. These antibodies are
directed against either type 2 signature cytokines IL-4, IL-5,
and IL-13, their respective surface receptors or against IgE.

Both TH2 cells and ILC2s are potential sources of type 2
signature cytokines. Moreover, ILC2s have been reported to
enhance the adaptive immune response and thereby influence
IgE production. The following monoclonal antibodies to treat
asthma are currently used in clinical practice: Dupilumab
(moderate to severe asthma and severe asthma) targets IL-
4 and IL-13 by binding to the IL-4Rα subunit thereby
acting as a blocking antibody for these signaling pathways
(129, 130). Mepolizumab and Reslizumab (both eosinophilic
asthma) target IL-5 directly and thereby neutralize this signature
type 2 cytokine, reducing the rate of exacerbations (131,
132). Benralizumab (severe eosinophilic asthma) is directed
against the IL-5Rα subunit (133). Lebrikizumab (severe asthma)
and Tralokinumab (moderate to severe asthma) are directed
against IL-13 (134, 135), and Omalizumab (severe allergic
asthma in adults and children) targets and neutralizes IgE
(136, 137). The ILC2-eliciting cytokine TSLP plays a critical
role in human asthma and antibodies to neutralize TSLP
(Tezepelumab) have been tested to treat allergen-induced asthma
(138, 139). Overall, these antibodies block and thereby neutralize
important immune mediators secreted by ILC2s as well as
TH2 cells.

Neuropeptides
ILC2s in mouse and human can sense and respond to
neuropeptides such as neuromedin U (25, 140, 141). Although
pulmonary ILC2s exhibit a more moderate response to
neuromedin U when compared to intestinal ILC2s under the
tested conditions (140), several different neuropeptides are
present in the lungs (142), including vasoactive intestinal peptide
(VIP). VIP can induce cytokine stimulation of intestinal but
also pulmonary ILC2s (63). Inhalation of a VIP agonist (Ro
25-1553) resulted in a short but significant bronchodilatory
effect (143), however the exact mechanism and a possible link
to pulmonary ILC2s is unclear. In contrast to VIP, calcitonin
gene-related peptide (CGRP) is elevated in some asthmatic
patients (144), and neuroendocrine cells, which co-localize in
the airways with ILC2s are an important source thereof (145).
ILC2s respond to CGRP by secreting more IL-5, however,
targeting CGRP and thereby ILC2s still needs to be evaluated
in asthma patients. Targeting neuropeptides and their receptors
may be a promising concept for future therapy but still requires
further investigation.

Transcription Factors
GATA3 is the master transcription factor of ILC2s and
critical in regulating asthmatic responses in patients with a
predominant TH2 phenotype. Targeting GATA3 is complex
due to its intranuclear location but would enable to already
intervene at a very early stage in the disease formation
process. Novel approaches to antagonize GATA3 using antisense
molecules (DNAzymes) overcome this challenge by cleaving and
inactivating GATA3 messenger RNA (mRNA). GATA3-specific
DNAzyme SB010 has shown to significantly attenuate both early
and late-phase asthmatic responses after allergen exposure in a
phase IIa proof-of-concept trial (146).
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CONCLUDING REMARKS & OUTLOOK

Since allergic respiratory diseases are rapidly increasing
worldwide, there is a critical need to optimize current and
develop novel therapeutic strategies. Reports in recent years
have shown that ILC2s are important players in experimental
mouse models of allergic airway inflammation and their role
in asthmatic patients is just starting to unveil itself. Although
neutralizing ILC2-elicited immune mediators or blocking
respective signaling pathways are currently used to treat
asthma, it is of great interest to develop alternative strategies
to target not only the consequence but the cause of respiratory
inflammation. This may be achieved by blocking ILC2s fairly
early in disease and re-directing their activity. Moreover, the
merge of immunology with other fields such as neurobiology
opens new concepts and will reveal novel targets of translational
interest. The unique microenvironment of the respiratory tract
with its diversity of non-hematopoietic cells and their close
proximity to ILC2s will as well unfold thrilling answers of ILC2
maintenance and activation in the future. We are excited to
see further research on ILC2 biology in respiratory allergic

inflammation which will surely provide essential knowledge to
develop novel concepts and strategies for asthma treatment and
improving overall respiratory health.
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