11 research outputs found

    CompuTable

    Get PDF
    Take your average coffee table, add a couple of screens, a CPU, speakers, and lighting, and you would have the CompuTable. And the lights aren’t the only thing green about the CompuTable; it’s built from salvaged and recycled computer components and requires less energy than a typical desktop.Ope

    The Immune Landscape of Cancer

    Get PDF
    We performed an extensive immunogenomic anal-ysis of more than 10,000 tumors comprising 33diverse cancer types by utilizing data compiled byTCGA. Across cancer types, we identified six im-mune subtypes\u2014wound healing, IFN-gdominant,inflammatory, lymphocyte depleted, immunologi-cally quiet, and TGF-bdominant\u2014characterized bydifferences in macrophage or lymphocyte signa-tures, Th1:Th2 cell ratio, extent of intratumoral het-erogeneity, aneuploidy, extent of neoantigen load,overall cell proliferation, expression of immunomod-ulatory genes, and prognosis. Specific drivermutations correlated with lower (CTNNB1,NRAS,orIDH1) or higher (BRAF,TP53,orCASP8) leukocytelevels across all cancers. Multiple control modalitiesof the intracellular and extracellular networks (tran-scription, microRNAs, copy number, and epigeneticprocesses) were involved in tumor-immune cell inter-actions, both across and within immune subtypes.Our immunogenomics pipeline to characterize theseheterogeneous tumors and the resulting data areintended to serve as a resource for future targetedstudies to further advance the field

    Topological Considerations on the Use of Batteries to Enhance the Reliability of HV-Grids

    Get PDF
    The large amount of renewable energy sources (RESs) recently integrated within the electric power systems across the world poses new challenges for their operation. Among several viable solutions, energy storage systems are the most promising to increase reliability and flexibility. This paper proposes a novel topological and probabilistic approach to find the optimal capacity and siting of energy storage devices, in order to increase the system reliability and the hosting capacity of renewables. Wind and solar productions, generators availability, and real-time demand are modeled with proper distribution functions, and the yearly expected energy not supplied is estimated using a sequential Monte Carlo technique. Four siting policies are applied and compared to place the optimal storage capacity on eight grids with different topological characteristics. Power flows are linearized and the optimization of resources is formulated as a linear programming problem. The results show that large-scale batteries operated by the Transmission System Operator can significantly improve system reliability and exploitation of RESs. The presence of energy-hubs and small-world properties strongly increase the transmission effectiveness of weakly- and well-meshed grids. A siting policy based on the Power Transfer Distribution Factors matrix of the grid turns out to be particularly successful

    Fragile X mental retardation protein in intrahepatic cholangiocarcinoma: regulating the cancer cell behavior plasticity at the leading edge

    No full text
    Intrahepatic cholangiocarcinoma (iCCA) is a rare malignancy of the intrahepatic biliary tract with a very poor prognosis. Although some clinicopathological parameters can be prognostic factors for iCCA, the molecular prognostic markers and potential mechanisms of iCCA have not been well investigated. Here, we report that the Fragile X mental retardation protein (FMRP), a RNA binding protein functionally absent in patients with the Fragile X syndrome (FXS) and also involved in several types of cancers, is overexpressed in human iCCA and its expression is significantly increased in iCCA metastatic tissues. The silencing of FMRP in metastatic iCCA cell lines affects cell migration and invasion, suggesting a role of FMRP in iCCA progression. Moreover, we show evidence that FMRP is localized at the invasive front of human iCCA neoplastic nests and in pseudopodia and invadopodia protrusions of migrating and invading iCCA cancer cells. Here FMRP binds several mRNAs encoding key proteins involved in the formation and/or function of these protrusions. In particular, we find that FMRP binds to and regulates the expression of Cortactin, a critical regulator of invadopodia formation. Altogether, our findings suggest that FMRP could promote cell invasiveness modulating membrane plasticity and invadopodia formation at the leading edges of invading iCCA cells

    Recent advances in neurology 2013-2014

    No full text

    The Immune Landscape of Cancer

    Get PDF
    We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes\u2014wound healing, IFN-\u3b3 dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-\u3b2 dominant\u2014characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field. Thorsson et al. present immunogenomics analyses of more than 10,000 tumors, identifying six immune subtypes that encompass multiple cancer types and are hypothesized to define immune response patterns impacting prognosis. This work provides a resource for understanding tumor-immune interactions, with implications for identifying ways to advance research on immunotherapy

    The Immune Landscape of Cancer (Immunity (2018) 48 (812–832), (S1074-7613(18)30121-3), (10.1016/j.immuni.2018.03.023))

    No full text
    (Immunity 48, 812–830.e1–e14; April 17, 2018) In the originally published version of this article, the authors neglected to include Younes Mokrab and Aaron M. Newman as co-authors and misspelled the names of authors Charles S. Rabkin and Ilya Shmulevich. The author names have been corrected here and online. In addition, the concluding sentence of the subsection “Immune Signature Compilation” in the Method Details in the original published article was deemed unclear because it did not specify differences among the gene set scoring methods. The concluding sentences now reads “Gene sets from Bindea et al., Senbabaoglu et al., and the MSigDB C7 collection were scored using single-sample gene set enrichment (ssGSEA) analysis (Barbie et al., 2009), as implemented in the GSVA R package (Hänzelmann et al., 2013). All other signatures were scored using methods found in the associated citations.
    corecore