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Abstract 

 

Insects face a multitude of threats from the pathogens and parasites they encounter over their life cycles, and they use 

robust immune systems to defend themselves. This chapter provides a tutorial for the identification and annotation of 

genes that comprise the immune system from newly sequenced insect genomes. Insect immune responses are 

orchestrated by the products of a suite of genes responsible for pathogen recognition, signal transduction, and 

pathogen killing. Many of the genes and proteins underlying these processes can be identified based on sequence 

homology with related species that have been immunologically characterized. Additional components of the immune 

response can be identified by transcriptomic analyses to detect genes whose expression changes in response to 

infection stimulus. Application of our step-by-step protocols for these complementary approaches enables the 

characterization of insect immune systems from genomic data.   
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1 Introduction 

 

A major element of genome sequencing projects is the identification and annotation of the genes 

expected to underlie key physiological processes. The initial identification of these genes from genomic 

data enables subsequent functional experimentation and comparative genomic analyses to understand 

the evolutionary forces that drive establishment, maintenance, and diversification of these processes. In 

this chapter, we describe (i) a general framework for using sequence homology searches, and (ii) a 

detailed infection protocol for transcriptomic analyses, to identify and annotate candidate immune 

system genes in newly sequenced insect genomes. 

 

The identification of genes in newly sequenced genomes is typically initiated with computational 

searches for homologs of genes that have been characterized in other species. This approach works well 

for genes that make up an evolutionarily conserved, canonical immune repertoire, such as those 

established over two decades of functional genetic research on the model insect Drosophila 

melanogaster [1–6] and more recent work in non-model insects [7–16]. The identification of novel 

genes or those with no prior ascribed functional role in immunity, however, requires experimental data 

to be coupled with the computational analyses. Identifying these infection-responsive genes is 

facilitated by the fact that the expression of many immune genes is induced by infectious challenge. 

This means that transcriptomic analysis of changes in gene expression after infection can be used to 

support inferences from homology searches and to suggest additional, sometimes novel, components of 

the immune system. 

 

Homology searches are excellent for identifying conserved genes and protein domains that comprise 

various components of the innate immune system. This includes most immune gene families and 

signaling pathway members. The presence of core recognition, signaling and modulation, and effector 

components of the immune system indicates functional conservation across taxa, while notable 

absences such as the apparent degradation of the Imd pathway in pea aphids [10] can suggest possible 
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rewiring of the system. Computational searches will identify candidate immune-related genes from the 

full set of genes predicted by whole genome annotation pipelines. Manual curation may be required to 

validate some candidates or to confirm cases of apparent losses of otherwise widely-conserved genes. 

Homology searches also help to detect and quantify expansions and contractions of multi-gene families 

that vary in copy number across insects, such as genes encoding peptidoglycan recognition proteins 

(PGRPs) and members of the phenoloxidase cascade (PPOs). Unlike for the generally single-copy 

signaling pathway genes, defining clear orthologous relationships can be difficult for such multi-gene 

families, depending on the age of the gene duplications and the phylogenetic distance between the 

species being compared. Nevertheless, the variable numbers of such immunity genes can sometimes be 

interpreted as indicative of the natural selective and epidemiological pressures on the insect being 

studied [7, 17, 18]. 

 

Homology searches are invaluable for identifying most canonical immune genes. However, genes that 

have newly acquired immune functions, or evolutionarily novel genes with roles in immunity, will not 

be identified through homology searches using known immune gene sequences. Thus homology 

searches can be complemented with transcriptomic analyses to identify sets of genes whose expression 

levels are responsive to infection, but that are not normally considered part of the canonical immune 

system. In such analyses, the insect in question is challenged with a relevant infection stimulus and 

RNA is extracted either from the whole insect or from immunologically relevant tissues. The gene 

expression profiles of challenged insects can then be compared to the expression profiles of naïve 

insects, enabling identification of genes whose expression is induced or repressed by infection (e.g. [19, 

20]). Transcriptomic analysis is especially powerful for identifying effector genes such as those 

encoding antimicrobial peptides (AMPs). These may be unique to specific groups of insects and the 

genes are often so short that they fail to be detected by computational gene-finding algorithms. 

However, they are often massively transcriptionally induced upon infection. Thus, transcriptomic 

analysis can be a powerful approach to identify effectors that would be missed by other methods 

(reviewed in [21]). While AMPs and other effectors have direct roles in immunity, many other 

differentially expressed genes may play indirect roles and as such they do not form part of the “immune 
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system” by any canonical definition. For example, infection often causes activation of generic stress 

response genes [22, 23] and a transcriptional signature of repression of basal metabolism [24, 25]. In 

some cases, these transcriptional responses may promote host survival, but in other cases they may even 

represent deleterious consequences of infection. Therefore caution must be taken and it should not be 

assumed that a gene is part of the immune system solely because its expression level changes after 

challenge. 

 

Homology searches and transcriptomic analyses are complementary approaches to characterize genes 

that play a role in the insect immune system from newly sequenced genomes (henceforth referred to as 

the “target” or “focal” species). Sequence homology searching is powerful and allows for the 

identification of genes with conserved immune-related protein domains, including genes whose 

expression patterns do not change substantially in response to infections. Transcriptomic analyses have 

the advantage that they can identify novel infection-responsive genes that have not been previously 

characterized in other species. In this chapter, we detail a practical workflow for applying these two 

approaches in parallel to characterize the immune system of an insect with a newly sequenced genome. 

 

 

2 Methods 

 

2.1 Identification of canonical innate immunity genes 

 

Characterizing the canonical innate immune gene repertoire in newly sequenced genomes follows four 

main steps, presented in Figure 1. The first is to compile a comprehensive list of immune-related genes 

and their protein sequences from species that have already been characterized (henceforth referred to 

as the “reference” species). These sequences are then used to search the genomes and gene sets (the 

complete set of predicted genes for a given genome) for putative homologs and characteristic protein 

domains. The candidate gene models can then be inspected and manually curated to ensure that they 

are correct and complete. Finally, phylogenetic analyses to trace the evolutionary histories of each gene 
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family allow for the delineation of orthologs and paralogs, and the confident characterization of a new 

set of canonical immune genes. 

 

2.1.1 Compiling sets of reference sequences 

1. The comparative approach to identifying immune-related genes in newly sequenced genomes relies 

on comparisons with previously characterized sets of immunity genes in other species. While newer 

investigations of immune systems across diverse insect taxa have begun to reveal novelties in 

different species, a great deal of the collective knowledge of the canonical insect innate immune 

gene repertoire nevertheless still derives from studies conducted on D. melanogaster (see Note 1). 

To start compiling sets of reference immune gene sequences, you will first need to (i) define the 

scope of your study by deciding which immune-related pathways and gene families to include, and 

(ii) select appropriate species from which to source the reference immune protein sequences. 

2. Defining the scope of the immune gene repertoire to be examined requires an overview of the current 

understanding of the canonical insect innate immune system. The principal components of an 

immune response must include proteins responsible for recognition of pathogens, signal transduction 

once a pathogen has been recognized, and effector proteins and biomolecules that eliminate the 

pathogen (Table 1). A core set of key genes and pathways has been characterized through 

experimental research in different insect systems and shown to be widely conserved across divergent 

insect species (see Note 2). These can serve as the initial basis for homology searches, although 

novel genes should also be expected to emerge from each new study system. A streamlined scope 

would normally first focus on (i) canonical families of pathogen recognition receptors such as 

peptidoglycan recognition proteins (PGRPs) and gram-negative bacteria-binding proteins (GNBPs, 

also known as beta-1,3-glucan-binding proteins); (ii) the core members of the three main immune 

signaling cascades, the Toll, Imd, and JAK/STAT pathways; and (iii) effectors such as antimicrobial 

peptides (AMPs) and lysozymes (LYSs) whose expression is generally upregulated upon stimulation 

of these pathways. Additional core processes include immune responses such as RNA interference 

(RNAi), phagocytosis, apoptosis and autophagy, the defensive production of reactive oxygen species 

(ROS), and melanization reactions [26, 27]. Broadening the scope of the study further would 
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normally include (i) additional gene families with members implicated in pathogen recognition 

and/or immune response activation such as C-type lectins (CTLs), thioester-containing proteins 

(TEPs), or scavenger receptors (SCRs); (ii) genes responsible for the positive or negative regulation 

of core members of the main signaling pathways and cascade modulation. Ultimately, the scope of 

the study will be determined by size of the research team working on the project and the questions 

of particular biological interest for the target species. 

2. The selection of appropriate reference species should be guided by published comparative 

characterizations of other insect genomes such as those listed in Table 2. Selecting several reference 

species will allow for better consistency checks; i.e. do searches using one reference species produce 

similar results as using another reference species? Comparisons between insects from the same order 

are the most useful, as the lower sequence divergence between more closely related species improves 

the success of sequence homology searches. Additionally, gene family composition will generally 

be more similar between closely related species, with fewer gene gains or losses since their last 

common ancestor. Data from the reference species should public, versioned, and recognized by their 

respective communities as the official assemblies and gene sets, to facilitate both repeatability of the 

analysis and ease of data acquisition. Data retrieval and querying will be further facilitated if the 

selected reference species are already hosted by an online genome browser resource such as the 

Bioinformatics Platform for Agroecosystem Arthropods [28], Ensembl Metazoa [29], FlyBase [30], 

Hymenoptera Genome Database [31], i5k at the National Agricultural Library [32], the National 

Center for Biotechnology Information  [33], or VectorBase [34]. 

3. Having defined the scope and selected the reference species, you can now proceed with compiling 

your sets of reference immune-related protein sequences. Published studies such as those presented 

in Table 2 usually include lists of gene and/or protein identifiers of the immune genes that were 

identified. Use these to extract the corresponding sequences from the complete gene sets for each 

species. As these studies are effectively snapshots of the available data at the time of publication, 

they should be treated as starting points for compiling your own sets of reference sequences. By 

subsequently curating these initial sets, you will be able to match them with the most up-to-date 

information, both with respect to the latest genome assembly versions and their corresponding gene 
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sets, as well as to incorporate new discoveries or refinements described in the current literature. One 

advantage of having selected reference species with publicly browsable genomic resources is that it 

allows you to perform online queries with gene identifiers or names from the literature in addition 

to the sequence homology searches described below. Typically, the collected reference sequences 

will be the translated protein products of each transcript comprising each gene (see Note 3), stored 

in plain-text files in FASTA format. When alternative splicing produces protein products that differ 

substantially (e.g. a single PGRP gene that can encode one, two, or three distinct PGRP domains), 

it is important to collect all predicted transcripts. This will allow you to assess whether the target 

species genome also encodes equivalent transcripts and whether gains or losses of alternative 

transcripts have occurred.  

 

 

Table 1. The principal components of the canonical insect innate immune gene repertoire. 

 
Gene family or 
signaling pathway 

Brief description 

Imd pathway The immune deficiency pathway is characterized by peptidoglycan recognition protein receptors, intracellular signal 
transducers and modulators, and the NF-κB transcription factor Relish. 

Toll pathway The intracellular components of the Toll signaling are homologous to the toll-like receptor innate immune pathway in 
mammals, culminating in activation of the NF-κB transcription factors Dorsal (and DIF in Drosophila). 

JAK/STAT pathway The JAnus Kinase protein (JAK) and the Signal Transducer and Activator of Transcription (STAT) are two core 
components of the JAK/STAT pathway, which is involved in cellular responses to stress or injury. 

RNAi pathway RNA-interference protects against viral infections employing Dicer and Argonaute proteins as well as helicases to 
identify and destroy exogenous double-stranded RNAs. 

Antimicrobial peptides AMPs are the classical effector molecules of innate immunity; they include defensins, cecropins, and attacins that are 
involved in bacterial killing by disrupting their membranes. 

Caspases Cysteine-aspartic proteases are involved in immune signaling cascades and apoptosis.  

CLIP-domain serine proteases Several CLIP proteases have roles as activators or modulators of immune signaling cascades. 

C-type lectins CTLs are carbohydrate-binding proteins with roles in pathogen opsonization, encapsulation, and melanization, as well as 
immune signaling cascades. 

Fibrinogen-related proteins FREPs (also known as FBNs) are a family of pattern recognition receptors with homology to the C terminus of the 
fibrinogen β and γ chains. 

Galectins GALEs bind specifically to β-galactoside sugars and can function as pattern recognition receptors in innate immunity. 

Gram-negative binding proteins GNBPs (or β-1,3-glucan-binding proteins, BGBPs) are a family of carbohydrate-binding pattern recognition receptors. 

Inhibitors of apoptosis IAPs are important in antiviral responses and are involved in regulating immune signaling and suppressing apoptotic cell 
death.  

Lysozymes LYSs are key effector enzymes that hydrolyze peptidoglycans present in the cell walls of many bacteria, causing cell 
lysis.  

MD-2-like proteins MLs, also known as Niemann-Pick Type C-2 proteins, possess Myeloid-Differentiation-2-related lipid-recognition 
domains involved in recognizing lipopolysaccharide.  

Nimrods NIMs have been shown to bind bacteria leading to their phagocytosis by hemocytes. 

Peptidoglycan recognition proteins PGRPs are pattern recognition receptors capable of recognizing the peptidoglycan from bacterial cell walls. 

Prophenoloxidases PPOs are key enzymes in the melanization cascade that helps to kill invading pathogens and is important for wound 
healing. 

Peroxidases PRDXs are enzymes involved in the metabolism of reactive oxygen species (ROS) that are toxic to pathogens.    
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Scavenger receptors SCRs are made up of different classes that function as pattern recognition receptors for a broad range of ligands 
including from pathogens.  

Superoxide dismutases SODs are antioxidant enzymes involved in the metabolism of toxic superoxide into oxygen or hydrogen peroxide.   

Spaetzle-like proteins The cleavage of Spaetzle results in binding of the product to the Toll receptor and subsequent activation of the Toll 
pathway, SPZs contain a cystine knot domain. 

Serine protease inhibitors Protease inhibition by Serpins, or SRPNs, modulates many signaling cascades, they act as suicide substrates to inhibit 
their target proteases. 

Thioester-containing proteins TEPs are related to vertebrate complement factors and α2-macroglobulin protease inhibitors, their activation through 
proteolytic cleavage leads to phagocytosis or killing of pathogens. 

 

 

 

Table 2. Examples of comparative studies of the canonical insect innate immune repertoire. 

Gene categories: Rec, recognition; Sig, signaling; Mod, modulation; Eff, effectors. 

 
Focal species Comparison species Breadth of study Reference 

6 Glossina Musca domestica 
Drosophila melanogaster 

Rec, Sig, Mod, Eff Attardo et al, 2019 [35] 

Manduca sexta Bombyx mori Serine protease inhibitors (SRPNs) Li et al, 2018 [36] 

Aedes aegypti Aedes albopictus 
Anopheles gambiae 
Culex quinquefasciatus 

C-type lectins (CTLs) Adelman & Myles, 2018 [37] 

6 Glossina Several other dipterans 
Outgroup blood-feeding 
hemipterans 

Thioester-containing proteins (TEPs) Matetovici & Van Den Abbeele, 
2018 [38] 

Musca domestica Glossina morsitans 
5 mosquitoes 
7 Drosophila 

Rec, Sig, Mod, Eff Sackton et al, 2017 [7] 

Pteromalus puparum Aedes aegypti 
Anopheles gambiae 
Apis mellifera 
Bombyx mori 
Drosophila melanogaster 
Manduca sexta 

Serine protease inhibitors (SRPNs) Yang et al, 2017 [39] 

Bombus impatiens  
Bombus terrestris 

Apis florea 
Apis mellifera 
Megachile rotunda 
Nasonia vitripennis  
Tribolium castaneum 
Drosophila melanogaster 
Anopheles gambiae 

Rec, Sig, Mod, Eff Barribeau et al, 2015 [8] 

Anopheles gambiae 20 other mosquitoes 
Drosophila melanogaster 

Rec, Sig, Mod, Eff Neafsey et al, 2015 [40] 

Zootermopsis nevadensis Diptera 
Lepidoptera 
Coleoptera 

Rec, Sig, Mod, Eff Terrapon et al, 2014 [41] 

Nasonia vitripennis Drosophila melanogaster 
Anopheles gambiae 
Apis mellifera 
Acrythosiphon pisum 

Rec, Sig, Mod, Eff Brucker et al, 2012 [42] 

Aedes aegypti Anopheles gambiae 
Culex quinquefasciatus 
12 Drosophila 

Caspases (CASPs) Bryant et al, 2010 [43] 

Culex quinquefasciatus Anopheles gambiae 
Aedes aegypti 
Drosophila melanogaster 

Rec, Sig, Mod, Eff Bartholomay et al, 2010 [9] 

Acyrthosiphon pisum Drosophila melanogaster 
Anopheles gambiae 

Rec, Sig, Mod, Eff Gerardo et al, 2010 [10] 
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Tribolium castaneum 
Apis mellifera 
Pediculus humanus 

Anopheles gambiae Culex quinquefasciatus 
Aedes aegypti 

Mosquito leucine-rich repeat immune 
proteins (LRIMs) 

Waterhouse et al, 2010 [44] 

Bombyx mori Drosophila melanogaster 
Anopheles gambiae 
Aedes aegypti 
Apis mellifera 
Tribolium castaneum 

Serine protease inhibitors (SRPNs) Zou et al, 2009 [45] 

Bombyx mori Drosophila melanogaster 
Anopheles gambiae 
Apis mellifera 
Tribolium castaneum 

Rec, Sig, Mod, Eff Tanaka et al, 2008 [11] 

Drosophila melanogaster 11 other Drosophila Rec, Sig, Mod, Eff Sackton et al, 2007 [12] 

Aedes aegypti Anopheles gambiae 
Culex quinquefasciatus 
Drosophila melanogaster 

Rec, Sig, Mod, Eff Waterhouse et al, 2007 [13] 

Tribolium castaneum Drosophila melanogaster 
Anopheles gambiae 
Apis mellifera 

Rec, Sig, Mod, Eff Zou et al, 2007 [14] 

Apis mellifera Drosophila melanogaster 
Anopheles gambiae 

Rec, Sig, Mod, Eff Evans et al, 2006 [15] 

Anopheles gambiae Drosophila melanogaster Rec, Sig, Mod, Eff Christophides et al, 2002 [16] 

 

 

 

 

2.1.2 Searching gene sets for candidate immunity genes 

1.  The purpose of compiling a comprehensive and up-to-date set of reference sequences is to then use 

these as query sequences to search the gene set of the target species being investigated. Your searches 

should start with a global comparison (see Note 4) of the compiled sets of reference sequences 

against the target species’ gene set. Use the BLASTp option of the Basic Local Alignment Search 

Tool (BLAST) suite [46] to identify the most significant matches (i.e. the highest bit scores and the 

lowest expectation values) to the reference protein sequences in the predicted target proteome (the 

translations of the predicted gene set). The National Center for Biotechnology Information (NCBI) 

BLAST+ user manual (https://www.ncbi.nlm.nih.gov/books/NBK279690) provides detailed 

installation and usage instructions, and example commands (in monospace type following $ 

symbols) for the required steps are provided here with default parameters: 

Format the protein sequences from your gene set into a searchable database: 

$ makeblastdb -in geneset_proteins.fasta -dbtype prot -out proteinsDB 

Search your compiled reference protein sequences against the gene set: 

https://www.ncbi.nlm.nih.gov/books/NBK279690
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$ blastp -query reference_proteins.fasta -db proteinsDB -out referencesVSgeneset.txt  

Produce tabular results of searching your compiled reference protein sequences against the gene set: 

$ blastp -query reference_proteins.fasta -db proteinsDB -outfmt 6 -out 

referencesVSgenesetTAB.txt 

The BLASTp search will provide ranked lists of putative homologs of each query sequence from the 

reference proteins, thereby identifying the predicted proteins encoded in the target genome that most 

closely resemble the reference sets of immunity proteins. You should next run reciprocal BLASTp 

searches using the top-scoring proteins from the target species as queries against the complete 

protein set from the reference species. Your reciprocal searches should return the original query 

protein as the top-scoring match, especially in the case of proteins encoded by immunity genes that 

are generally maintained across most species as single-copy orthologs (but see Note 3). In contrast, 

for multi-copy gene families, several proteins encoded by members of the gene family in the 

reference genome may be among the best-scoring matches. These reciprocal sequence homology 

searches will provide support for the lists of putative immunity genes, but you will need to perform 

downstream phylogenetic analyses (see Section 2.1.3 step 6 below) in order to confirm single-copy 

orthologs and resolve the relationships among members of multi-copy gene families.  

2.  The next step is to complement the global protein-protein homology searches of gene set with 

protein-domain-level searches. Run InterProScan [47] on the proteins from the target species’ gene 

set and the reference protein sequences to obtain detailed domain-level annotations of all protein 

sequences with significant matches to profiles from the InterPro member databases [48]. Next, use 

the InterPro domains that characterize each of the different immune gene families or pathway 

members (Table 2) to identify genes from the target species that encode proteins with significant 

matches to these domains (see Note 5). For example, serine protease inhibitors (serpins, or SRPNs) 

are recognized by the ‘Serpin superfamily’ (IPR036186) or ‘Serpin family’ (IPR000215) profiles, 

or related profiles such as ‘Serpin, conserved site’ (IPR023795) or ‘Serpin domain’ (IPR023796). 

Exercise caution when the characteristic domains are promiscuous, meaning when they are also 

present in gene families unrelated to immunity, or when two or more distinct domains characterize 

a particular immune gene family. For example, Toll-like receptors (TLRs, or TOLLs) contain 

‘Leucine-rich repeat’ domains, but these are also found in many other types of proteins so their 



Waterhouse, Lazzaro, & Sackton   Page 11 of 34 

 

presence is not, on its own, diagnostic of TOLLs. Instead, TOLLs are more specifically characterized 

by several ‘Leucine-rich repeat’ domains followed by a ‘Toll/interleukin-1 receptor homology (TIR) 

domain’. The European Bioinformatics Institute provides detailed InterProScan installation and 

usage instructions (https://www.ebi.ac.uk/interpro/interproscan.html); the example here uses 

profiles from the Pfam database: 

Scan the gene set protein sequences and compiled sets of reference sequences for matches to InterPro domains: 

$ ./interproscan.sh -appl Pfam -i geneset_proteins.fasta -f tsv -iprlookup 

$ ./interproscan.sh -appl Pfam -i reference_proteins.fasta -f tsv -iprlookup 

3.  A third approach to searching the target species’ gene set for candidate immunity genes is to use 

profiles built from the reference sequences. First, align each set of orthologous or homologous 

reference immunity protein sequences collected from several reference species using tools such as 

PRANK [49] or MAFFT [50]. Next, convert the resulting multiple protein sequence alignments 

into sequence profiles using HMMER [51]. The HMMER suite of tools can then be used to search 

the profiles against the target species’ gene set. Here we present some examples of the commands 

that need to be run, but please see the user guides and installation instructions for the alignment 

tools and HMMER for full details. The input proteins in FASTA format should consist of orthologs 

or homologs from each of the reference species. Specifically, each FASTA file should contain only 

proteins encoded by homologs of a single gene or conserved gene family and the entire analysis 

should be repeated for each gene or gene family in the study.  

Multiple protein sequence alignment example using PRANK: 

$ prank -d input_proteinset1.fasta -o aligned_proteinset1.aln 

Multiple protein sequence alignment example using MAFFT: 

$ mafft input_proteinset1.fasta > aligned_proteinset1.aln 

Convert a multiple protein sequence alignment to a profile using HMMER: 

$ hmmbuild proteinset1.hmm aligned_proteinset1.aln 

Combine all your profiles into a single profile library (here just three sets shown): 

$ cat proteinset1.hmm proteinset2.hmm proteinset3.hmm > profile_library 

Compress and index the library of profiles: 

$ hmmpress profile_library 

Search the library of profiles against the target species’ gene set using HMMER: 

https://www.ebi.ac.uk/interpro/interproscan.html
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$ hmmscan profile_library geneset_proteins.fasta 

 

2.1.3 Curating candidate immune-related genes 

1. Your global protein sequence and profile searches and protein domain searches will result in lists of 

candidate immune-related genes from the target species. With good supporting data, especially from 

transcriptomics (as described below in Section 2.2), automated prediction pipelines applied to well-

assembled genomes generally produce gene sets with a high coverage of the true gene content [52–

54]. The task nevertheless remains challenging, and accurate predictions at the detailed level of gene 

intron/exon structures can be difficult to achieve even with extensive supporting data. Manual 

curation aims to verify that the automatically predicted gene models identified through your 

sequence and domain searches are in agreement with the available supporting evidence. You may 

undertake the curation process with a small team or you may bring together several groups of 

researchers and/or students (e.g.  [55–57]) to examine your lists of candidate immunity genes. For a 

small team, the curation process may focus on quality control and targeted appraisal of specific genes 

of interest. For example, quality control of seemingly anomalous results can confirm true novelties, 

such as the multi-PGRP-domain PGRP proteins encoded in the banded demoiselle genome [58]. For 

a larger research community the aims may be broader and may include taking advantage of 

researchers’ expertise to build a rich knowledge base for the target species. The tools and approaches 

described here are useful for both small- and large-scale curation efforts. 

2. Several computational resources need to be set up so that the genomic data from the target species 

can be easily queried by users with little or no bioinformatics expertise. You can achieve a local 

setup of the necessary resources with relatively modest computational equipment and the installation 

of several freely available bioinformatics packages and software. The key components should 

include a genome browser and a sequence search interface. A particularly useful platform that allows 

for sequence-based database searching is the combination of the JBrowse genome viewer [59] with 

the Apollo annotation feature editor plug-in [60], and SequenceServer [61]. Software installation is 

beyond the scope of this chapter but is described in detail in the respective setup and user guides. 

These resources will provide you with a user-friendly environment to interrogate the genomics data 
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without requiring experience with running command-line bioinformatics tools. They also offer the 

flexibility to search gene-by-gene for specific genes of interest, to search using sequences from 

species or genes that were not included in the compiled sets of reference sequences, or to use 

sequences from the target species to search for within-species homologs. 

3. A tBLASTn search of the reference immunity sequences against the target species’ genome 

assembly will enable visualization of genomic loci with homology to the reference proteins. 

tBLASTn uses the provided reference protein sequences to search the six-frame translations of the 

genome assembly nucleotides and is more sensitive than nucleotide-nucleotide searches. The 

tBLASTn results are useful because the automated pipeline used to predict gene models in the target 

species may have missed or misannotated some genes or exons, meaning that they would be 

impossible or difficult to identify from searching only the predicted gene set. You should produce 

tabular format outputs of the tBLASTn searches because these can be loaded as data tracks for 

visualization within a genome browser after converting them into General Feature Format (GFF) 

output files (see Note 4). The following commands illustrate how this can be achieved: 

Format your genome assembly into a searchable database: 

$ makeblastdb -in genome_assembly.fasta -dbtype nucl -out assemblyDB 

Produce tabular results of searching your compiled reference protein sequences against the genome assembly: 

$ tblastn -query reference_proteins.fasta -db assemblyDB -outfmt 6 -out 

referencesVSassemblyTAB.txt 

4. The locations of the best hits define genomic loci that likely encode orthologs or homologs of the 

reference sequences. Visualizing these using a genome browser enables you to assess how much of 

the reference sequence aligns to the target assembly and how well these alignments match up to the 

predicted gene model (see Note 6). Complementary supporting evidence comes from 

transcriptomics data in the form of RNA sequencing (RNA-seq) reads from samples prepared from 

your target species. The RNA-seq reads may derive from your own infection experiments (see 

Section 2.2 below), but if other datasets are available then it is advisable to also include these as 

additional supporting data. You will need to align the reads to the genome assembly in order to 

visualize them in a genome browser, typically as both stacked individual read alignments and read 

coverage plots (see Note 4). Several bioinformatics tools are able to align reads to an assembly (e.g. 
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HISAT2 [62] or STAR [63]) and coverage plots can be built using bamCoverage from the 

DeepTools suite [64]. Here we present some examples of the commands that need to be run, but 

please see the user guides for full details. 

Build an index of your genome assembly then align fastq format RNA-seq reads using HISAT2: 

$ hisat2-build genome_assembly.fasta index_name 

$ hisat2 –x index_name -1 sample_1.fastq -2 sample_2.fastq -S hisat2-mapped.sam 

Build an index of your genome assembly then align fastq RNA-seq reads to your assembly using STAR: 

$ STAR --runMode genomeGenerate --genomeDir star-index --genomeFastaFiles 

genome_assembly.fasta 

$ STAR --genomeDir star-index --readFilesIn sample_1.fastq sample_2.fastq --outSAMtype BAM 

SortedByCoordinate 

Produce an RNA-seq read coverage file using bamCoverage: 

$ bamCoverage -b Aligned.sortedByCoord.out.bam -o rnaseq-coverage.bw 

5. With the necessary resources in place, the next step is to examine the genomic locus encoding each 

candidate immunity gene in order to establish whether the predicted model is well supported (see 

Note 7). Well-supported models generally show RNA-seq coverage and spliced RNA-seq read 

alignments that match the intron-exon structure of the entire model and tBLASTn alignments for 

most of the model. Typical minor edits to improve the models include altering the intron-exon 

boundaries to match the aligned RNA-seq reads, removing non-supported exons (i.e. predicted exons 

that have no tBLASTn alignments and no aligned RNA-seq reads), or adding exons missed by the 

automated prediction pipeline (i.e. regions with tBLASTn alignments and/or aligned RNA-seq reads 

where no exon was predicted). For example, Figure 2 shows how editing an incorrectly predicted 

intron-exon boundary to match the supporting RNA-seq read alignments produces a full length gene 

model for Dicer-2. More substantial edits include the merging of two or more neighboring predicted 

gene models that in fact encode a single gene, or the splitting of gene models where the automated 

gene prediction has incorrectly fused neighboring genes. Automated gene predictors are prone to 

such erroneous fusing of neighboring genes when the genes are homologous or have arisen from 

tandem gene duplication events. Thus it is worth paying particular attention to the gene model 

predictions of members of multi-copy gene families. In addition, it is often challenging for 

automated pipelines to correctly predict two or more alternative transcripts from the same gene, so 
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manual editing may be required to distinguish the individual transcripts based on the available 

supporting data. 

6. One reason for checking and correcting the candidate immune-related gene models is to facilitate 

subsequent phylogenetic analysis of immune genes or gene families of particular interest, including 

where putative duplications/expansions have been noted from the initial searches. Molecular 

phylogenetic analysis aims to reconstruct the evolutionary histories of sets of homologous 

sequences. Conceptually, this is achieved by contrasting the species phylogeny with the inferred 

gene trees to enable the confident assignment of orthologous relations [65]. In practice there are 

many different methodological approaches and bioinformatics tools designed for preparing and 

analyzing the sequence data required for phylogenetic tree construction, the discussion of which is 

beyond the scope of this chapter. One suite of such tools that is particularly user-friendly for novices 

is the Molecular Evolutionary Genetics Analysis (MEGA) software [66]. In the context of 

characterizing your sets of newly identified putative immune-related genes, the phylogenetic 

analyses will allow you to (i) confirm or refine orthologous relations suggested by your reciprocal 

sequence homology searches and (ii) place putative gene duplications or losses in their appropriate 

evolutionary contexts. 

 

 

 

2.2 Identification of infection-responsive genes 

 

While searching based on sequence homology is a valuable approach to identify canonical immune 

genes in new species, some immunologically important genes may be novel to the target species or 

otherwise difficult to identify from sequence data. In many cases, however, expression of these genes 

is responsive to infection [21]. These can include both genes that are directly involved in immune 

defense, and also genes that are regulated as a consequence of infection. Using RNA-sequencing (RNA-

seq), it is possible to obtain a direct readout of the transcriptional response to infection.  
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There are a number of important experimental design issues to consider before embarking on RNA-seq 

based identification of immune-responsive genes [67]. Two key requirements must be met for a 

successful experiment. First, in order for the protocol outlined below to be successful, a mostly complete 

draft genome with a high-quality gene set must exist for the target insect. While it is possible to use 

RNA-seq data to build a de novo transcriptome [68, 69] (and see Chapter 2 of this book) or to aid 

gene prediction for an draft genome without a gene set [62, 70], this is beyond the scope of this chapter 

and we do not recommend it unless there is no alternative. Second, it must be possible to experimentally 

infect the target insect in the laboratory. Ideally, the insect can be maintained for several generations 

under controlled conditions to eliminate effects of previous exposure to pathogenic challenges or other 

stimuli that could modulate the immune response. 

 

The simplest experimental design to identify genes that are transcriptionally responsive to infection 

would include just a single control condition (either naive, untreated insects or sterilely wounded 

insects), and a single experimental condition at some time post infection with the desired infectious 

challenge. More complex designs could include multiple controls, multiple pathogenic agents, and/or 

multiple time points. As a general rule of thumb, a minimum of three biological replicates should be 

included for each experimental treatment and control, although additional replicates will increase 

statistical power [71–74]. If the target insect is so small that sufficient RNA is hard to obtain from a 

single insect, pools of genetically similar (or ideally identical) individuals can be used, but this does not 

eliminate the need for multiple biological replicates of the experiment. 

 

2.2.1 Artificial infections for RNA-seq analysis 

Insects mount different immune responses to different types of infectious challenge (e.g., bacterial, 

fungal, viral, protozoan, nematode, etc.), and different challenges will therefore elicit different 

transcriptional responses. Injection with bacteria or bacterial cell wall and membrane components is 

often used as a generic immune stimulus for identification of genes that are transcriptionally responsive 

to infection [19, 20]. Here, we detail a protocol for infection of a small insect like Drosophila or a 

mosquito with a live bacterium. The protocol is demonstrated visually in [75] and can be modified for 
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larger insects or for other infectious agents. The experimenter should choose the most appropriate 

challenge for the system being queried and modify delivery of the challenge accordingly. 

1. In order to minimize experimental noise, all insects should be reared in the laboratory without 

exposure to pathogens prior to the experiment. This will allow optimal comparison of the expression 

profiles of infected insects to unchallenged controls. Biological replicates should be collected for 

both challenged and unchallenged insects (see Note 8). For small insects or small tissue samples 

taken from larger insects, the material from multiple individuals can be pooled within each biological 

replicate. Using co-reared insects that are the same age and sex will minimize experimental noise, 

although in some cases it may be of interest to make comparisons across life stages, sexes, or rearing 

conditions (see Note 9).  

2.  Culture the infectious agent and prepare it for infection. In the case of bacterial challenge, infection 

may be delivered with a single bacterium or a mixture of different bacteria, and the bacteria may be 

either alive or killed by incubation at 60oC for 30 minutes (see Note 10). 

3. Challenge the insects in the infection treatment. Bacteria, planktonic fungi, and viruses can be 

injected into insects with a microcapillary needle. Live bacteria may also be introduced with a septic 

pinprick (demonstrated in detail in [75]) (see Note 11). Other challenges, such as infection with 

filamentous fungi (e.g. [76]) or eukaryotic parasites (e.g. [77]), require different methods. 

4. Collect the insects at the prescribed time point post-infection (see Note 12). RNA may be isolated 

immediately or the insects may be flash-frozen in liquid nitrogen and stored at -80oC until RNA 

extraction is to be performed. If RNA will be performed using a TriZOL (Invitrogen) extraction, the 

insects or insect tissue may be stored at -80oC in TriZOL. 

5. Isolate high-quality RNA from the infected and control insects. There are a variety of protocols and 

commercial kits available for RNA isolation, and any of these should be work well for RNA 

sequencing. Isolations using TriZOL reagent (Invitrogen) are reliable and inexpensive. A thorough 

protocol for RNA isolation using TriZOL is outlined in Chapter 2 of this volume. Consult with the 

facility that will perform your RNA sequencing to see whether they have preferences or 

recommendations as to which RNA isolation procedure should be employed. 
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6. Perform the RNA sequencing (RNA-seq) on your infected and control insect material. In most 

circumstances, we recommend that inexperienced practitioners outsource library preparation and 

sequencing to a core facility or commercial provider. The library preparation is highly technical and 

labor intensive, and the technology changes quickly. Unless a very large number of libraries are 

going to be generated, the cost savings associated with doing the preparation yourself are generally 

not worth the effort or the risk of failed reactions. Therefore, if possible, use a facility that will accept 

RNA shipped on dry ice and that prepares their libraries and performs sequencing in-house. The 

optimal read length and depth of sequencing will depend on project budget and a variety of other 

factors that will vary among projects. For the analysis described below, we recommend a minimum 

of 10 million fragments sequenced per replicate, using at least 40 bp paired-end reads. Increasing 

read depth to 20-30 million fragments per replicate can be beneficial if project scope and funding 

allow (see Note 13), and increasing read length to 75 bp will decrease the number of reads that map 

ambiguously to multiple locations in the genome (e.g., reads from members of closely related gene 

families). 

 

2.2.2 Performing differential expression analysis 

1. The first step in differential expression analysis is using a read alignment or pseudoalignment (see 

Note 14) to estimate expression of each transcript or gene (see Note 15). Here we present one option 

for this, but there are many alternative choices (see Note 16). The protocol here assumes you have 

paired-end sequencing reads from your core facility or commercial provider, in fastq format. We 

describe optional quality control and trimming steps in Note 17. A workflow of the steps required 

to perform differential expression analysis is presented in Figure 3. In the following steps, command 

lines are given with variables (file names, species, and sample identifiers) that will need to be 

changed for each experiment in curly braces {}. Commands are given in monospace type. 

2. This protocol uses commands from the kallisto program [78] (https://pachterlab.github.io/kallisto/) 

and should run in less than an hour per sample on a typical laptop computer. Software installation is 

beyond the scope of this chapter but is described in detail here: 

https://pachterlab.github.io/kallisto/download. The first step in using kallisto is to prepare the index. 

https://pachterlab.github.io/kallisto/
https://pachterlab.github.io/kallisto/download
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Indexing takes a plain-text FASTA file containing the nucleotide sequences of all transcripts from 

the gene set of a given genome and converts it into a format that allows for subsequent rapid 

pseudoalignment of the RNA-seq reads to the transcripts. The complete set of transcripts from the 

gene set to be analyzed is referred to in the kallisto documentation as the ‘reference transcriptome’ 

to which the RNA-seq reads will be mapped. For your target species you should obtain the FASTA 

file of transcripts from the official gene set provided by public databases (e.g. Ensembl, FlyBase, 

NCBI, VectorBase). If only available in-house then use the FASTA file of transcripts resulting from 

the full genome annotation pipeline. 

3. Prepare a reference transcriptome index for kallisto. First, make a working directory and copy the 

transcriptome FASTA file to it. You can then index this file and proceed to quantify transcript 

abundances. You will obtain a {SAMP}_out directory for each sample/replicate you generated, 

which can be used with sleuth (or other tools) as described below to estimate differentially expressed 

transcripts and genes per condition. 

In the working directory and with kallisto installed: 

$ kallisto index -i {INDEX_NAME}.idx {TRANSCRIPTOME}.fasta 

Quantify abundance of transcripts in each sample, where {SAMP} is the fastq base name for a particular replicate/condition: 

$ kallisto quant -i {INDEX_NAME}.idx -o {SAMP}_out -b 100 {SAMP}_R1.fastq.gz {SAMP}_R2.fastq.gz  

5. There are many toolkits for detecting genes with differential expression between conditions. Here 

we present protocols for using sleuth [79], but discuss alternatives in Note 18. Note that sleuth 

requires the technical bootstraps generated by kallisto for full functionality, and thus we only 

recommend this protocol to be used with data analyzed first by kallisto. 

Open R and ensure that the sleuth package is installed, as well as tidyverse which is used for some data manipulation tasks 

(see Note 19): 

$ library(sleuth) 

$ library(tidyverse) 

Set the path to your kallisto output files:  

$ kall_path <- {PATH/TO/FILES} 

Get sample identifiers from names of kallisto runs: 

$ sample_id <- dir(file.path(kall_path)) 

Get the directories where the kallisto runs are saved: 
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$ kal_dirs <- data.frame(sample_id = sample_id, path = file.path(kall_path, sample_id)) 

Load the table that associates sample identifiers with treatments and add file paths. You will need to create this yourself (see 

Note 20): 

$ s2c<-read_table(“{PATH/TO/TABLE}”)%>% full_join(kal_dirs, by=c(“sample_id” = “sample_id”) 

Load gene to transcript map (see Note 21): 

$ t2g<-read_table(“{T2G_FILE”}) 

Run sleuth prep, note this aggregates transcript level counts into gene level counts:  

$ so<-sleuth_prep(s2c, extra_bootstrap_summary=TRUE, read_bootstrap_tpm=TRUE, target_mapping = 

t2g, aggregation_column = ‘gene_id’) 

Fit a sleuth model (see Note 22): 

$ so<-sleuth_fit(so, ~treatment, ‘full’) 

$ so<-sleuth_wt(so, “inf”, which_model = "full") 

Output results: 

de_genes <- sleuth_results(so, test=”inf”) 

Note that there are many quality control and plotting options available in sleuth, which can be explored using the built-in Shiny 

server. To launch run:  

$ sleuth_live(so) 

 

 

 

3 Notes 

Note 1. In addition to the references presented in the introduction, literature reviews that focus on 

different pathways or responses can provide additional details as to the expected structure 

and function of immune system components (e.g. on antiviral immunity [80], or the Imd 

[81], JAK/STAT [82], or Toll [83] pathways). While studies of the Drosophila immune 

system provide a rich knowledge base for understanding insect immunity, this model should 

be considered as a sample of the full spectrum immunity in insects. Experimental 

examination of immune responses in other insects have revealed many features that are 

widespread, such as melanization reactions and presence of the principal immune signaling 

pathways. However, they have also identified many lineage-specific features that differ 

greatly from observations to date in flies. For example, adult Drosophila have very few 
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circulating hemocytes (blood cells) [84] so the relative importance of cellular immunity is 

probably underestimated in Drosophila relative to other insects. With the great diversity of 

insect species (over 500 million years of evolution), and the variety of pathogens they 

encounter in their various ecological niches, such differences are to be expected. 

Note 2. Immune-related genes of the canonical repertoire in fact comprise many genes that may not 

have direct experimental evidence supporting their roles in immunity. It is also important to 

note that many genes and pathways have pleiotropic functions, meaning a single gene can 

produce proteins that are involved in different biological processes, so being classified as a 

canonical immunity gene does not preclude involvement in other processes. Similarly, the 

sub-classification of genes into recognition, signal transduction, modulation, or 

defense/effector phases is a useful framework, but it does not necessarily exclude the 

possibility of the protein being involved in other processes. 

Note 3. For gene models with alternative transcripts, it is advisable to collect the sequences for each 

transcript that produces a distinct protein product through alternative splicing, because (i) 

annotation prediction of alternative transcripts by automated pipelines is particularly 

challenging so having a reference set of possible transcripts will help to build accurate gene 

models during curation; and (ii) being able to select equivalent transcripts will make 

downstream phylogenetic analyses more robust and, in the case of alternatively spliced 

protein domains, will allow for domain-based analyses. It should also be noted that sequence 

homology searches with the different protein products of alternative transcripts may obscure 

truly reciprocal best matches at the level of the gene. These can generally be resolved by 

examining the genomic loci to determine equivalence at the transcript level. 

Note 4. Performing global searches of all the compiled sets of reference protein sequences against 

the proteins from the gene set will require running some bioinformatics sequence analysis 

tools. Working with colleagues who have experience running such analyses will allow 

novice team members to learn these key skills. Installing the required software and setting 

up the resources to run a local genome browser and sequence search interface can be 

achieved with a range of freely available bioinformatics tools. Aligning RNA-seq reads to 
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the genome assembly and producing tracks for visualization in a genome browser will 

greatly facilitate the process of manually curating the candidate immune-related genes. 

Providing detailed instructions for installing and running these tools is beyond the scope of 

this chapter. Instead, team members should be able to relatively easily set up these necessary 

resources following instructions in the references and links provided herein. These tools will 

greatly facilitate both the gene identification and curation steps, e.g. being able to visualize 

the genomic locations of the sequences that produce significant matches to the reference 

protein sequences (using the tabular tBLASTn results) in order to find genes that may have 

been missed by the automated gene prediction pipeline as well as highlighting possible 

errors in the predicted gene models that need to be corrected during manual curation. 

Note 5. Examining the results from running InterProScan on the compiled sets of reference proteins 

will provide an up-to-date summary of which proteins encoded in the target genome contain 

domains that are characteristic of members of the canonical immune gene repertoire. It is 

important to note that InterPro entry types range from general to specific: homologous 

superfamily, protein family, domain, repeat, or site. Thus the more general entry types may 

recognize a much broader set of proteins than the immune genes of interest. For example, 

the prophenoloxidases (PPOs) are recognized by the ‘Hemocyanin/hexamerin’ family 

(IPR013788) profile, which also recognizes insect hexamerins (storage proteins). 

Note 6. The alignments that define significant matches between the reference protein sequences and 

the target assembly are not expected to correspond perfectly to the predicted gene model in 

the target species. Evolutionary divergence between the reference and target species means 

that only the relatively well conserved regions of most proteins will produce confident 

alignments. Highly diverged regions, regions of low-complexity sequence, and short exons 

may produce no significant hits and therefore could appear as non-supported parts of the 

gene model. In addition, the alignment boundaries are unlikely to match exactly the 

intron/exon boundaries of the gene model since tBLASTn searches do not take putative 

splice sites into account. Thus, the homology searches serve to identify the most likely 

genomic loci encoding genes of interest and they provide support for the predicted gene 
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model, but differences between the alignment coordinates and the gene model are to be 

expected. 

Note 7. Detailed practical guidelines for performing manual curation of predicted gene models and 

assessing the supporting evidence using the Apollo online collaborative genomic annotation 

editor are provided in the documentation and user guide materials 

(http://genomearchitect.github.io). Additional training materials include several webinars 

available through YouTube, e.g. from the Bioinformatics Platform for Agroecosystem 

Arthropods https://www.youtube.com/watch?v=BMeSwdKiO_E or from the European 

Molecular Biology Laboratory Australia Bioinformatics Resource 

https://www.youtube.com/watch?v=Wec7ZlXykQc. 

Note 8. The simplest possible experimental design is a single control (three replicates of either 

untreated insects or sterilely wounded insects) compared to three replicates of infected 

insects assayed at a single timepoint post-infection. More complicated experiments might 

include a time series after infection to capture transcriptional dynamics in response to 

infection. Depending on the goals and scope of the project, a variety of options are feasible. 

More complex designs (e.g., those with more than a single control and a single infected 

treatment) will require more complicated analysis. 

Note 9. Exact age of insects will depend substantially on the species and goals of the project (e.g., 

comparisons across life stages or sexes may be of interest). In general, to minimize 

uncontrolled noise, ensuring that the experimental insects are of roughly the same age and 

the same sex is standard practice. The number of individual insects depends on size and the 

amount of RNA that can be obtained from single individuals. Your sequencing provider can 

tell you how much starting material is necessary for library preparation, which provides a 

starting point for the infection experimental design. 

Note 10. Challenge with a single bacterial strain will give a clean measurement of the transcriptional 

response to that bacterium, whereas challenge with a pool of bacterial species (e.g., 

including both Gram-negative and Gram-positive) will reveal a broader spectrum of 

responses but will not allow determination of which genes are responding to which microbe. 

http://genomearchitect.github.io/
https://www.youtube.com/watch?v=BMeSwdKiO_E
https://www.youtube.com/watch?v=Wec7ZlXykQc
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Live bacterial infection will stimulate transcriptional responses to both the presence of 

bacteria (e.g., immune stimulation by peptidoglycan) as well as responses to pathogenic 

damage caused by infection, which can also be a strong trigger of immune responses [85]. 

The ideal bacterial concentration is one that is sufficient to induce a strong immune response 

without causing substantial mortality so that immune responses do not become conflated 

with transcriptional signatures of death. In most cases pilot experiments using different 

concentrations and measuring mortality over time will be necessary to calibrate the proper 

dosage. Challenge with dead bacteria or purified bacterial components eliminates concerns 

about host mortality and often is sufficient for stimulating a robust response [25]. It should 

be noted that some pathogens are capable of suppressing host responses (e.g. [86]), so heat-

killing these prior to infection may yield a stronger response. Pathogens such as viruses, 

nematodes and protozoa generally need to be alive in order to infect so these should not be 

heat-killed unless required by the specific objectives of the experiment. A standard method 

for culturing bacteria prior to infecting D. melanogaster is shown visually in [75].   

Note 11. Delivering infection by septic pinprick is less quantitatively controlled than performing 

injections with a microcapillary needle, but also requires less equipment and technical 

proficiency. For many experimental designs, especially those using a mixed pool of bacteria 

to elicit a broad spectrum immune response, precise quantification of the challenges is 

probably unnecessary. It should be noted, however, that septic pinprick delivers fairly low 

infection dose that may not be sufficient to stimulate a robust response in large insects such 

as large caterpillars and beetles. For these insects, microcapillary injection may be required. 

Note 12. The time after infection at which to measure expression is an important decision. Bacterial 

infections elicit a rapid response in insects, and sampling at 8-12 hours post-infection is 

common and experimentally convenient (allowing infection in the morning and freezing of 

infected insects in the evening, or infections in the evening and freezing the following 

morning) [7, 87, 88]. However, transcriptional dynamics vary depending on the pathogenic 

agent and other experimental variables [25, 89]. Therefore it is advisable to perform 

preliminary experiments before collecting samples for sequencing to be able to select the 
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most appropriate conditions and time points. These pilot studies could involve low-coverage 

RNA-seq from a single sample across multiple time points or could involve quantitative 

PCR of candidate immune effectors, such as antimicrobial peptides, that provide reliable 

readouts of immune system activation. 

Note 13. In general, power to detect differential expression scales more with replicate number than 

with reads per sample [71]. So for a fixed amount of sequencing, there is more experimental 

gain in sequencing a greater number of replicates to individually lower depth than 

sequencing fewer replicates to higher depth. However, given a fixed number of replicates, 

increasing depth will also increase resolution and power up to a point. Sequencing depth can 

be adjusted to the scope of the project and available budget. 

Note 14. There are two approaches to determining which transcript a read arises from. The traditional 

approach uses standard read alignment metrics to map a particular read to a genome (or 

transcriptome) sequence, and then uses the mapping position to determine the transcript. 

There are many programs that can perform this alignment procedure, as recent 

benchmarking studies show [90]. The pseudoalignment approach instead uses 

representations of transcripts and reads to find a fast match; this has the benefit of greatly 

increased speed and computational efficiency, at no cost to accuracy [91]. 

Note 15. For the purposes of identifying genes regulated by infection, aggregating results to gene-

level summaries (in which expression values are aggregated across all alternative isoforms 

of a gene) is often the most desirable outcome. There is some debate about the best way to 

do this e.g. [92]; we have presented one option but there are alternatives such as those 

described in the discussion here: https://pachterlab.github.io/sleuth/walkthroughs. In 

addition, when evaluating alternative splicing and related questions, it is essential to estimate 

transcript-level differential expression instead of gene-level differential expression. 

Note 16. We present a method using kallisto [78] to generate expression estimates for use in 

downstream pipelines, but there are several alternatives, including salmon, which also uses 

pseudoalignment [93], RSEM, which uses full alignment [94], and others. Kallisto has the 

https://pachterlab.github.io/sleuth/walkthroughs
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considerable advantage of low compute requirements, meaning a typical experiment can be 

analyzed on a laptop computer without the need for dedicated computing clusters. 

Note 17. Trimming low quality reads generally is not necessary for RNA-seq differential expression 

analysis, although removing adaptors can be useful if your reads have substantial adaptor 

contamination. There are a number of tools for doing this, including Trimmomatic [95], and 

NGmerge [96]. 

Note 18. There are a wide variety of R packages that can fit differential expression models to RNA-

seq data, including DESeq2 [97], limma voom [98], and edgeR [99]. We focus on sleuth 

here, as it is designed to work with the output of kallisto, but all of the listed tools perform 

well. 

Note 19. For most packages, including tidyverse and dependencies (but not sleuth), it should be 

possible to install them using the install.packages(“{PACKAGE NAME}”) 

command. See the tidyverse documentation and the sleuth documentation for additional 

details. 

Note 20. Sleuth requires a table that has sample_id as one column, and the treatment (e.g., infected, 

control) as the second column, in order to match samples to conditions. This can be prepared 

in Excel or similar spreadsheet software, saved as a CSV file, and loaded into R. 

Note 21. To aggregate transcript-level results into gene-level counts requires a file mapping transcript 

identifiers to gene identifiers. This should be a text file with two columns, one with transcript 

identifiers matching the transcripts used in kallisto, and the other with gene_id. 

Note 22. Sleuth uses two approaches to estimate significance of differential expression. A Wald test, 

which compares two conditions, and a likelihood ratio test, which can compare arbitrary 

nested models. In this case, we show how to run a simple Wald test comparing an infected 

sample and control sample, for a simple experiment with only two conditions. For more 

complex experiments, a likelihood ratio test may be more useful. See the sleuth manual for 

details. 
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Figures 

Figure 1. Workflow of steps required for canonical immune gene identification. 

Protein sequences of immune-related genes from selected reference species are first collected based on 

the current knowledge of insect innate immunity. These are then used as reference query sequences and 

sequence hidden Markov model (HMM) profiles for homology searches of the gene set (protein 

sequences) of the target species to be investigated. Complementary protein domain searches are used 

to identify genes that contain domains in common with the reference immunity genes. Results from the 

sequence and domain searches are then used to prioritize the inspection of the candidate immunity genes 

and curate their predicted gene models to ensure they are as complete and accurate as possible. This 

will benefit from the results from homology searches of the reference query sequences against the 

genome assembly as well aligned RNA sequencing (RNAseq) reads from the target species. Combined 

phylogenetic analysis of homologous reference and target candidate sequences to build gene trees then 

allows for the confirmation or rejection of the candidate immune-related genes and the characterization 

of their orthologous or paralogous relationships. 

 

 



Waterhouse, Lazzaro, & Sackton   Page 33 of 34 

 

 

Figure 2. Example of how manual curation can improve automatically predicted gene models. 

The top panel shows the curated gene model and the original prediction of the Dicer-2 gene on the 

reverse strand (i.e. the 5′ start is on the right and the 3′ end is on the left of the figure) from a mosquito 

genome. Exons are shown as rectangles connected with lines indicating introns, with predicted coding 

sequence (CDS) regions in light blue and predicted untranslated regions (UTRs) shown in white. 

RNAseq read coverage is presented below the gene models in dark blue, clearly showing where reads 

from the mature messenger RNA align to the genome. Below that are alignments from tBLASTn 

searches with the Dicer-2 protein (AGAP012289) and the Dicer-1 protein (AGAP002836) from 

Anopheles gambiae (the reference immune protein sequences). The lower panel shows the alignments 

of individual RNAseq reads to this locus (in dark grey, with colors indicating mismatches between the 

reads and the reference genome assembly), with reads that map across potential splice junctions 

connected with black lines. Editing just one intron-exon boundary to match the supporting RNAseq and 

tBLASTn evidence (shown with the red arrow) corrects the gene model. The first six exons were 

incorrectly predicted to form a multi-exon 5′ UTR (all white rectangles) in the original gene model. In 

the curated gene model all six exons now form part of the CDS (i.e. the regions that will be translated 

into protein), with just a short 5′ UTR at the start of the first exon. The translation of the curated gene 

model now encodes a full-length Dicer-2 protein. 
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Figure 3. Workflow of steps required for immune transcriptome analysis. 

Immune transcriptome analysis can proceed once the RNAseq reads (in fastq format) from all the infection and 

control samples have been obtained. The analysis also requires the complete set of transcripts from the gene set 

annotation of the target species, which may also contain updated gene model annotations based on manual curation 

described in Section 2.1.3 of this chapter. In the kallisto documentation, this complete set of transcripts is referred 

to as the ‘reference transcriptome’ to which the RNA-seq reads will be mapped. RNA-seq reads (possibly after 

pre-processing; see Note 17) are mapped to transcripts by kallisto using a pseudoalignment step that then allows 

for the quantification of transcript abundances from each condition to determine expression levels of each gene 

and isoform. Finally, differential expression of genes and isoforms among conditions is modeled using sleuth/R 

to define sets of infection-responsive genes. 

 

 


