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Abstract

The large amount of renewable energy sources (RESs) recently integrated within
the electric power systems across the world poses new challenges for their op-
eration. Among several viable solutions, energy storage systems are the most
promising to increase reliability and flexibility. This paper proposes a novel
topological and probabilistic approach to find the optimal capacity and siting of
energy storage devices, in order to increase the system reliability and the host-
ing capacity of renewables. Wind and solar productions, generators availability,
and real-time demand are modeled with proper distribution functions, and the
yearly expected energy not supplied is estimated using a sequential Monte Carlo
technique. Four siting policies are applied and compared to place the optimal
storage capacity on eight grids with different topological characteristics. Power
flows are linearized and the optimization of resources is formulated as a linear
programming problem. The results show that large-scale batteries operated by
the Transmission System Operator can significantly improve system reliability
and exploitation of RESs. The presence of energy-hubs and small-world proper-
ties strongly increase the transmission effectiveness of weakly- and well-meshed
grids. A siting policy based on the Power Transfer Distribution Factors matrix
of the grid turns out to be particularly successful.

Keywords: Sizing, Siting, Reliability, Power Transfer Distribution Factors,
Small-worldness, Preferential attachment
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T , T̄ Set of installed and on-line conventional generators, respectively
W , S Set of wind and solar-PV farm, respectively
L, B, I Set of loads, batteries, and bus bars, respectively
α Modulation margin
coff1, coff2 Price of modulation power steps (e/MWh)
costCR Cost of RES curtailment (e/MWh)
costEENS Cost of EENS (e/MWh)
Pmax, Pmin Rated power output and technical minimum power of a generator (MW)
RU , RD Ramp Up/Down of conventional generators (MW/h)
Off1, Off2 Step limit for modulation power (MWh)
Pp Produced power at forecasting stage (MW)
Pav Available renewable power at forecasting stage (MW)
Dex, Dst

ex Expected demand at forecasting stage(MW)
Ds Served power at forecasting stage (MW)
Dreal, D

st
real Real-time demand (MW)

stt Real-time state of conventional generator (1/0)
PMC Real-time available renewable production (MW)
Poff Production for modulation purposes (2 steps) (MWh)
chmax, SoCmax Storage power and energy capacity (MW, MWh)
SoCmin Minimum level of stored energy (MWh)
StDis, StCh Power exchanged between storage and grid (MW)
ηch, ηdis Battery’s efficiency in charging and discharging operations
r, LE Interest rate and expected life of equipment (years)
cen, cpow Battery investment costs (e/MWh, e/MW)

1. Introduction

In recent years, a large amount of renewable energy sources (RES) has been
integrated within the electric grids across the world, in order to fulfill the goals
of bold energy policies. For instance, the European Commission has set the tar-
gets to increase the energy efficiency by 20% and the share of renewables to 20%
by 2020 [1]. The American Department of Energy prescribed that wind energy
should contribute to 20% of electricity consumption by 2030 [2]. As a conse-
quence, the uncontrollable and uncertain nature of RES poses new challenges
to the operation of power systems, possibly affecting their reliability. Several
viable solutions have been investigated in the recent scientific literature, such as
demand management [3], the upgrade and expansion of the transmission grid
[4], and energy storage systems. As network renovation and expansion may not
be always technically feasible [5] and encounter strong public opposition [6], en-
ergy storage systems can defer large investment in high-voltage and distribution
grid assets [7, 8], while increasing transmission capability [9]. Among several
storage technologies, batteries and underground CAES are promising solutions
for grid support and load shifting [5, 10, 11] so as to increase system reliability
and flexibility, which is necessary to accommodate high shares of RES gener-
ation [12]. The use of batteries for load shifting purposes has been proved to
be cost-effective for small renewable systems and medium-scale institutions in
several US and European countries. For instance in Italy [13], a battery system
would be economically advantageous for a public institution if a time-of-use tar-
iff with significant difference between maximum and minimum electricity prices
is applied, and it will be even more convenient in the near future thanks to the

2



already declining costs of energy storage devices. The reliability of the bulk
power system, that is to say of the combination of generation, transmission,
and HV nodal loads, is also affected by the grid topology, especially in terms of
blackouts’ frequency and magnitude [14, 15, 16].

In this work, a topological and probabilistic approach is proposed to find
the optimal storage capacity to increase the system reliability and the use of
renewables, addressing the first following research question: What is the op-
timal size of storage systems in order to improve the reliability of bulk power
systems, under production and demand uncertainties, and in a market environ-
ment? In this paper, we take a graph-theoretical perspective, considering power
systems modeled as weighted graphs [17]. The effects of constrained power flows
and different topologies are evaluated before and after the allocation of large-
scale batteries, assuming four siting policies. In this way, the second research
question is addressed: What are topologically-optimal locations to place the stor-
age devices in order to improve the power system reliability? To answer these
questions, a modified version of the IEEE-RTS 96 with RES plants is used as
reference grid and as the basis to generate other seven test networks with dif-
ferent topological characteristics. RES production, generators’ availability, and
real-time demand are modeled with probability density functions (PDFs) and
estimated via a sequential Monte Carlo method (MC). A simplified three-stage
model of the electricity market is adopted to assess the working point of the
system during four representative days, which present typical Italian seasonal
demand trends and varying weather conditions. Reduction in operation costs
is compared with storage investment expenses to determine the optimal capac-
ity. Then, the system reliability of different test cases is compared, and several
storage systems are placed according to topology-driven siting policies. The
results show that energy storage equal to 20% of the installed RES capacity can
significantly reduce the amount of Expected Energy Not Served (EENS) and
the excess of renewable production to curtail. The declining trend in storage
costs allows to be optimistic about a future increase in applications [18, 19],
as batteries are well suited to cope with the growing amount of installed RES
and the consequent need for improving the transmission capacity and system
flexibility [5].

From a topological point of view, small-world and preferential-attachment
models exhibit the best performances, in terms of exploitation of RES and sys-
tem reliability, among the cases with low and high average degree, respectively.
The siting analysis evidences that installing one centralized storage device is
usually the worst solution. Among the decentralized policies, effective results
are achieved when batteries are located according to the Power Transfer Distri-
bution Factors matrix (PTDF) of the grid.

The main contribution of this paper consists in proposing a novel approach
based on the combination of a graph-theoretical perspective with a probabilistic
reliability analysis, in order to investigate to what extent the network topology
could provide insights in the optimal siting of energy storage systems.

The remainder of the paper is organized as follows. Section 2 provides an
overview of the state of the art on the main ingredients of the study: storage
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sizing and siting problem, on the one hand, and the influence of the topology of
HV transmission grids on the bulk power system reliability, on the other hand.
Section 3 briefly introduces the Monte Carlo method and the simplified market
model used in this study. Section 4 provides the main features of the sizing and
siting policies, together with some fundamental concepts for their definition.
Section 5 and Section 6 explain the minimization problem to be solved and
the details of the test cases, respectively. Results are presented in Section 7,
followed by conclusions in Section 8.

2. State of the art

While the sizing and siting of batteries for transmission grids are becoming
increasingly investigated, taking a graph-theoretical perspective in combination
with a probabilistic approach is, to the best of our knowledge, a novel research
line that could improve planning tools. We briefly overview the state of the art
in these fields separately.

2.1. Sizing and siting of storage systems

Several methodologies are available in the literature to optimize the storage size
in power systems with renewable sources, often associated with the investiga-
tion of its optimal operation. The studies in [20] and [21] propose methods
for the scheduling and operation of generic storage devices in a market system.
In both papers, the objective is to maximize the revenue for renewable power
plants owners. In the first work, the owner can take advantage of variations
in the spot price by shifting energy over time, whereas in the second work,
wind plants participate in ancillary service markets. In [21], a deterministic
framework is considered, whereas in [20] wind farm output is probabilistically
determined and the storage is operated in order to smooth unexpected varia-
tions. A deterministic framework is also considered by the authors of [22], who
adopt a vertically-integrated approach. The optimal capacity results from the
minimization of traditional generation and storage investment cost. A simi-
lar approach is found in [23], whose authors use probability density functions
(PDFs) to model the stochastic nature of wind speed and load. Total costs
of generation and load shedding are minimized to seek the optimal capacity of
CAES, whose investment costs are compared to conventional gas-fired alterna-
tives. The main objectives of this study and of [24] are the enhancement of
system reliability and wind integration. In the latter, the stochastic behavior of
wind speed is simulated with the ARMA time-series model. Expected Energy
Not Supplied (EENS) and the Expected renewable Energy Not Used (EENU)
offer an index of system reliability improvement by adding batteries. In [25],
Markovian functions are assumed to govern renewable generation, demand, and
electricity prices; the main goal is to minimize the long-term average cost of con-
ventional generators, as well as investment in storage, while satisfying all the
demand. The authors of [26] propose a probabilistic method for determining
the optimal size of on-site storage and transmission upgrades needed to connect
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wind generators to power systems, while improving their reliability and the use
of available transmission capacity. In [27], the authors discuss the financial via-
bility of installing bulk batteries to reduce the curtailment of wind energy and
improve the performance of the power grid in northern Vermont. With a similar
aim, both ESS and transmission expansion are jointly investigated as possible
technologies in [8], where the proposed MILP problem is applied to two test sys-
tems, and in [12], where a cost/benefit analysis is conducted for Central Western
Europe and Nord Pool grids. In [28], we perform an investigation of how proper
sizing (and, to a smaller extent, siting) of large-scale batteries can enable a
smarter use of the transmission grid with a high share of renewable, assuming a
deterministic framework. Optimal sizing and siting problems are jointly inves-
tigated with a three-stage approach in [29]. Starting from an idealized situation
where storage is available in any capacity at any node, the optimal size is deter-
mined averaging over one year the daily maxima of stored energy and exchanged
power. Only locations with the highest contribution in lessening transmission
congestions are identified as valuable ones. Time series models of wind speed
data are used to obtain the deterministic wind forecast. Storage allocation is
the first main goal of [30], together with the storage portfolio optimization. The
optimal siting problem is addressed by minimizing production costs, storage
operation, and maintenance costs. Wind production is considered as known
data as well as the demand, and several technologies are considered. A greedy
algorithm is used in the aforementioned [22] to choose the nodes where to place
storage devices, starting from storage available at all nodes, and shrinking their
numbers while improving performances at each iteration. Genetic algorithm-
based approaches for storage allocation are proposed in [23, 31, 32]. In [31], a
market-based optimal power flow assuming generator marginal costs as an input
determines the unit (de)commitment for each hour and local marginal prices to
minimize the hourly social costs. The study concludes that co-locating storage
and wind farms enhances the performance of wind integration. However, differ-
ent conclusions are drawn in [23, 22, 30, 28], where the storage is found to be
optimally located in buses other than close to renewable generators, mainly due
to network congestions.

In this paper, we propose a probabilistic and topological approach to address
the storage sizing and siting problem, by taking the TSO’s point of view to im-
prove system reliability and increase the hosting capacity of renewable sources.
To the best of our knowledge, little work has been done on this topic. The siz-
ing problem is addressed by minimizing the operation costs due to EENS and
curtailment of renewable energy in excess. Stochastic nature of RES generation,
load, and generators’ availability are modeled with PDFs and a Monte Carlo
method is used to compare the benefits of storage with respect to its invest-
ment costs. A simplified model of the electricity market is considered for the
day-ahead and real-time operation of conventional generators; batteries are used
by the TSO only as a last resort to balance the grid. Then, the allocation of
batteries in eight different grids is investigated by means of four siting policies
related to topological network characteristics.
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2.2. Network topology and bulk power system reliability

Chassin and Posse propose a method to estimate the loss-of-load probability
reliability index of a power system based on the Barabási-Albert scale-free net-
work model [33]. Holmgren models power networks as graphs and evaluates the
effects of random failure and deliberated attacks to high degree nodes in terms
of unserved energy [34]. Two real power grids, a scale-free network, and a ran-
dom graph are used as test cases. The latter appears to be the less vulnerable
to external attacks than the other cases, and, in general, all networks are more
vulnerable to deliberated attacks than challenged by random failures. The un-
served energy index is used in [35] to compare the effects of strategic attacks
when removing critical components identified by conventional betweenness or
by an electrical one. The results show that the proposed metric gives a better
indication of the grid weakness. Roughly ten years of blackouts within European
transmission grids are investigated in [14] and [15]. Reliability indexes conceived
for power systems (energy not served, loss of power, and restoration time) are
correlated with transmission grid topologies. Both studies conclude that more
interconnected systems are more frequently subject to fault events, but these
have a smaller impact than in grids presenting less meshed and more randomly-
generated topologies. Exposure to cascading failure in power grids with high
connectivity and clustering is investigated in [36]. Long-edges connecting nodes
far from each other are found to be the weakest elements of the grid, as their
failure causes the reroute of a significant amount of energy, leading to cascading
effects. It is suggested that a more reasonable configuration of the grid would be
more effective than increasing its capacity. We provide a comprehensive survey
on topological and network models of electricity transmission and distribution
grids in [37], while we propose novel topological metrics in [38] and techniques
to identify grid weaknesses in [39].

Previous network theoretical studies consider simple models of power sys-
tems [37]. The vast majority neglects physical properties of the lines, but focuses
mainly on simple connectivity relations. Furthermore, most studies investigate
the system robustness to outages or external attacks by removing nodes and
edges, and not in terms of system adequacy and security, in particular concern-
ing the optimal placement and operation of batteries.

In the present study, we investigate to what extent different grid topologies
may affect the optimal siting of storage devices devoted to reducing EENS and
maximizing the production of RES, while coping with a secure operation of the
bulk power system, i.e., of transmission and generation assets. In this paper,
the concept of reliability refers to both adequacy (are generation, transmission,
and storage assets well sized and sited?) and system security (is the use of
resources well scheduled and operated, in order to face real-time contingencies
and unavoidable power unbalances?). Both aspects are in fact captured by reli-
ability indexes such as EENS, whose value depends on availability, dispatching,
and on-line operation of resources.
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3. Approach and Operation Phases

Our approach to coping with the variability of generation, storage and demand,
is probabilistic. It is based on the Monte Carlo method, that is a stochastic
simulation using (pseudo-) random numbers [40, 41, 42, 43]. We employ different
PDFs to estimate the availability of each conventional generator, the renewable
production, and the expected load error. If a generation unit fails at a given time
step, it is unavailable also during the following ones, until the failure is repaired;
the real-time load demand is determined by considering the cumulative error.
As each system state is dependent on the previous ones, the applied method is
often called sequential. Further details of our use of the Monte Carlo method
are presented in Appendix A.

As for the market environment, we adopt a simplified model to assess the
scheduled working point of each generation unit during the simulated days.
The system operation is reduced to three main steps (forecast, normal, and
contingency operation) and an hourly discretization is considered for the whole
simulation. The forecast operation defines which units are committed to pro-
ducing and at what level of power, for each hour of the following day. At this
stage, load profiles are assumed to be deterministically known, their trends and
peak-values are derived from the Italian TSO database [44, 28]. The wind speed
is set equal to the seasonal average for the whole day, whereas the solar pro-
duction is estimated assuming clear sky conditions. All conventional generators
are available and progressively dispatched to cover the load, according to an
economic merit order list based on their marginal costs [45]. At the beginning
of the real-time simulation of a day, an MC drawing is performed to calculate
the hourly load forecasting error, the wind speed, the sky clearness index, and
the actual availability of generators. If the expected production based on RES
and conventional generators is still feasible and the system is balanced, the real-
time hourly operation is simulated as scheduled (normal operation). If one or
more outages or a significant error in load or RES forecasting are drawn by the
Monte Carlo procedure, the substantial system unbalance requires the quick
activation of the so-called contingency procedure. The significant gap between
real-time load and available power must be covered by the modulation power
of spinning units, according to a merit order list based on their two level of
offers. Fast generators can also be turned off or on for the following hours, as
replacement reserve. When these actions are not enough to meet the entire load,
the TSO can provide balancing power by means of its storage devices, if avail-
able, by injecting into the grid energy previously stored or by charging them.
As a last resort, the extra demand or renewable energy are subject to load
shedding or curtailment, respectively. Although economic studies show that
batteries become more cost-effective when used for multiple applications [46],
how to integrate storage facilities within the regulatory environment is still an
open problem [47]. In this work, we assume that the TSO uses its storage only
after all power producers have procured and, potentially, been compensated for
balancing services. Four days are simulated in order to represent different sea-
sonal supply-demand scenarios by varying load profiles and expected renewable
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productions [28].

4. Sizing and Siting

The aim of this study is to estimate the best size and location of large-scale bat-
teries in transmission systems of various topological shapes, in order to increase
the system reliability and to reduce the yearly Expected Energy Not Supplied
(EENS). Consequently, this work is articulated in two parts: first, the best total
size of storage is assessed by comparing the reduction of the annual operation
cost obtained assuming a single busbar model, with the costs of investment and
O&M of storage; second, the best location is found by comparing the effects of
four siting policies on grids with different topological structure. In the following
sections, we present methodologies for sizing and siting of storage, as well as
some background on both power systems and complex network analysis.

4.1. Sizing

The total size of storage to add to the grid is determined by means of an eco-
nomic evaluation of the annualized costs for installing, operating, and maintain-
ing batteries and of the potential benefit of the storage in terms of reduction of
the annual operation costs (OC); these include the cost of load shedding and a
penalty for curtailing renewable energy.

Several configurations are simulated with the same generation park, while
storage systems are added to the grid as one centralized large-scale battery,
whose power capacity varies from 10% to 100% of the installed renewable ca-
pacity, in 8 steps. The storage system is used for the energy-intensive application
of energy shifting over time. According to EPRI’s studies [5, 48], batteries are
one of the most flexible and attractive technologies for grid support and load
shifting. Among the available types, the Sodium-Sulfur (NaS) technology is
already applied in several areas (Japan, USA, Europe, UAE) and considered
one of most promising solution for this application [49]. Therefore, its typical
energy to power ratio and charge/discharge efficiency are adopted, i.e, 6 hours
and 87%, respectively. Moreover, an all-inclusive cost of 500 ke/MWh is con-
sidered and annual O&M costs are assumed to be 3% of the investment [48],
[50].

4.2. Siting

The second part of this work consists of comparing in terms of system reliabil-
ity the effects of four siting policies on similar grids that differ only for their
topological characterization. Transmission grids are topologically represented
as a graph, with nodes and edges [51, 17, 37]. The first ones are distinguished
in sinks, sources, and inner nodes, corresponding to generators, loads, and bus-
bars, respectively. The second ones represent the transmission lines and are
characterized by a weight, i.e., the reactance, and three levels of power capac-
ity: continuous rating (CR), long term-emergency rating (LTR), and emergency
rating (ER). The first two limits are set according to the IEEE-RTS 96 [52],
while the latter is 10% higher than LTR.
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4.2.1. PTDF

The Power Transfer Distribution Factors matrix (PTDFs) expresses the influ-
ence of each nodal power injection on every line. In this work, a DC-PTDF is
considered; it is based on the linearized DC power flow and mainly affected by
the grid topology [53, 54]. The DC power flow is a useful approximation of AC
power flow and is frequently adopted at the transmission level, when voltage
stability is not investigated (e.g. [53, 30, 22]). The DC-PTDF matrix can be
used to evaluate the change in power flow on lines due to nodal injections, hence,
given the PTDF of a network, one can try to change the power flow on an edge
by supplying or withdrawing power from a node. For further details, we refer
to [53].

4.2.2. Utilization index and Flow-based nodal centrality

In [28] we define the Utilization index to assess the usage of the edge capac-
ity. Let Pe be the power flow passing through the edge e and let CRe be its
continuous rating capacity; the Utilization index U(e) is then defined as:

U(e) = Pe/CRe (1)

If U(e) ≤ 1, the edge is in a normal state, while if U(e) > 1 the edge is
overloaded or in an emergency state. Adjusting the power flows in real-time to
relief overloaded lines is out of scope of this work, nevertheless the Utilization
index is useful to identify and rank the most stressed lines. The Flow-based
nodal centrality is used to identify the nodes that dispatch a higher amount of
power among the grid, having a more central role within the network than those
less active. According to [55], if Pij is the positive power flow from node i to
node j during a single time step; Ptot is the total power flowing on the grid
in the same time step; Γ(i) is the set of adjacent nodes to i, i.e., a real edge
connects them; then, the Flow-based nodal centrality index of node i, Cf (i), is
defined as follows:

Cf (i) = (
∑

j∈Γ(i)

Pij)/(Ptot) (2)

4.2.3. Siting Policies

Given the topology of a grid without storage, the real-time demand and pro-
duction levels obtained from the simulation of its operation (see Section 3), we
run simulations of the DC-load flows and consequently apply the just defined
metrics. Then, four different siting policies are applied to add one or more stor-
age systems: (a) placing them on the ten nodes with the highest average Cf (i);
(b) placing them close to the ten consumers most subject to load shedding;
(c) placing them on the ten nodes connected to the ten most congested lines,
ranked according to the PTDFs; and (d) placing them on the single node with
the highest average Cf (i).

According to their definitions, both U(e) and Cf (i) vary at each time-step;
however, it is not possible to relocate batteries every 15 minutes. To use these
metrics for locating the batteries, we need constant values. As regards policies
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(a) and (d), the most active nodes are identified according to their average Cf (i)
over all simulations. With respect to policy (c), to identify the most stressed
lines, for each edge e we count the time-steps during which it is overloaded
or in emergency state, i.e., U(e) > 1, and we rank all real lines accordingly.
Moreover, it is worth explaining that the element on row n and column l of the
DC-PTDF matrix of a grid specifies which share of power flows on line l when
one unit of power is injected at node n and extracted at a sink node. We set
the sink node to be the slack bus used for running the OPF [56]. For each one
of the top-ten congested lines l, we use the DC-PTDF to place a storage at the
node n which corresponds to the smallest negative element PTDF(n,l), as we
aim to lower the power flow on line l.

Choosing a different number of storage devices according to the test-case
could have been an alternative approach. However, since this study investigates
to what extent different topological characteristics can influence the optimal
siting of batteries, we use in all cases the same amount of batteries in order to
compare the effects of the siting policies on grids with different topologies but
the same number of generators, loads, and storage nodes.

The resulting EENS, curtailed RES energy, number of hours with no feasible
solution, and line congestions are considered as optimality functions to compare
topologies and policies.

4.3. Topological measures

We distinguish edges as real and virtual. The real edges represent physical
transmission lines between inner nodes, creating the main structure of grid,
hereinafter referred to as the core of the network. Sinks and sources are consid-
ered external nodes and are linked to the core by virtual edges with a conven-
tional weight of 10−4, in order to characterize every node in a unique way. The
grids used as test-cases (see Section 6) are described using topological measures
derived from the complex network analysis field.

The clustering coefficient is a measure of the extent to which the adjacent
nodes of node i are also adjacent to each other [57]. Therefore, it indicates the
tendency of nodes to clustering together and it is defined by Watts and Strogatz
as follows:

ci = 2Ei/ki(ki − 1) (3)

where Ei is the number of edges between the adjacent vertexes of i and ki is the
degree of node i, i.e., the number of edges incident to the node. The clustering
coefficient of the grid, C, is the average of ci over all vertexes.
The shortest path between two vertexes is the path among all possible ones with
the least number of edges. Consequently, the characteristic path length CL of
a network is the median of the shortest path lengths connecting each vertex to
all other vertexes. According to Watts and Strogatz, a network is said “small-
world” if the relations C � Crand and CL & CLrand hold, where Crand and
CLrand are the clustering coefficient and characteristic path length of a random
graph having the same number of vertexes N and the same average degree 〈k〉.
The authors of [58] proved that this is a categorical definition that does not allow

10



to measure to what extent a network has small-world properties. To address
this problem, they propose a quantitative measure of “small-worldness:”

σ = (C/Crand) · (CLrand/CL) (4)

If σ > 1, then the network is said to be a small-world one.

5. Formulation

To formulate and solve the problem, we consider four phases: forecasting, con-
tingency, sizing, and siting.

5.1. Forecasting Phase

The forecasting phase is used to determine for each time step which units are
called to produce and at what level of power. The objective function to be mini-
mized at every time-step h represents the total costs of production, curtailment,
and expected energy not supplied (EENS):

min

{∑
t∈T

ct · Pp,t,h +
∑
s∈S

cs · Pp,s,h +
∑
w∈W

cw · Pp,w,h+

costCR ·

[∑
s∈S

(Pav,s,h − Pp,s,h) +
∑
w∈W

(Pav,w,h − Pp,w,h)

]

+ costEENS · (Dst
ex,h −Ds,h)

} (5)

where the first three terms are the production costs, at their marginal costs c;
the second term is the cost of RES curtailment; last term is the cost of EENS.
The value of renewable curtailment is set equal to 200 e/MWh, considering
the actual Italian legislation on the compensation for RES reduction [59], while
a realistic value of loss of load for firms, governments, and households is 8000
e/MWh, irrespective of the timing of the event [60].

The objective function is subject to several additional linear constraints:

Pmin
t + α · Pmax

t ≤ Pp,t,h ≤ Pmax
t · (1− α) (6)

Pp,t,h−1 −RDt ≤ Pp,t,h ≤ Pp,t,h−1 +RUt (7)

0 ≤ Pp,r,h ≤ Pav,r,h ≤ Pmax
p,r (8)∑

t∈T
Pp,t,h +

∑
s∈S

Pp,s,h +
∑
w∈W

Pp,w,h = Ds,h (9)

where Equation (6) guarantees ∀t ∈ T that conventional plants can participate
to real-time balancing, given a modulation margin α = 7%. Equation (8) limits
renewable productions ∀r ∈ S ∪ W . Equation (7) takes into account upper
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and lower ramp generation limits ∀t ∈ T , while Equation (9) guarantees the
supply-demand balance, considering a single busbar model.

As during night hours the electricity price is usually low, it is assumed that
from 10 p.m until 4 a.m. the batteries’ owner (TSO) buys an amount of energy
corresponding to 25% of their capacity or until they are fully charged. There-
fore, the total expected load to supply at this stage Dst

ex,h is higher than the
consumers’ expected demand Dex,h.

5.2. Contingency Procedure
Once the actual real-time consumers’ demand Dreal,h and available production
are determined by using the MC technique, the unbalance is calculated as fol-
lows:

∆Ph = Dst
real,h −

∑
t∈T

stt,h · Pp,t,h −
∑
s∈S

PMC,s,h −
∑
w∈W

PMC,w,h (10)

If ∆Ph = 0, the hourly operation is simulated as planned; otherwise, the con-
tingency procedure is activated. Two scenarios can be distinguished depending
on whether ∆Ph is positive or negative. The general objective function is:

min

{∑
t∈T̄

(Poff1,t,h · coff1,t + Poff2,t,h · coff2,t) + costX ·Xc,h

}
(11)

where the subscripts off1 and off2 refer to the first and second steps of offers
necessary to increase (if ∆Ph > 0 ) or decrease (if ∆Ph < 0 ) production.
Analogously, Xc is the EENS or the curtailment. Equation (11) is subject to
the following linear constraints:

0 ≤ Poff1/2,t,h ≤ Off1/2,t (12)

0 ≤ EENSc,h ≤ Dst
real,h (13)

0 ≤ curtc,h ≤
∑
s∈S

PMC,s,h +
∑
w∈W

PMC,w,h (14)

∑
t∈T̄

(Pp,t,h±Poff1,t,h±Poff2,t,h) +
∑
s∈S

PMC,s,h +
∑
w∈W

PMC,w,h = Dst
real,h∓Xc,h

(15)
Equation (12) sets the limits on first and second steps of modulation power

∀t ∈ T ; Equation (13) and Equation (14) refer to the maximum possible EENS
and curtailment, respectively; Equation (15) guarantees the demand-supply bal-
ance, considering a single busbar model.

If there is still an unbalance, fast generators are turned off or on for the
current time-step and the same algorithm is run again. As a last resort, the
TSO uses the storage to reduce the final curtailment of RES or load.
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At the end of each time step h, the battery’s state of charge at the beginning
of next time-step SoCh+1 is updated: if the storage discharges, StDish > 0,
then Equation (16) applies, whereas if it charges, StChh < 0, Equation (17) is
used.

SoCh+1 = SoCh − StDish/ηdis (16)

SoCh+1 = SoCh + StChh · ηch (17)

As apparent, the model conceived for the energy storage is very general
and not constrained or limited to a specific technology (pumped-storage power
plants, batteries, CAES, etc).

5.3. Economic Evaluation for Sizing

Simulations based on the MC technique halt upon the fulfillment of a stopping
criterion or a prefixed limit of iterations, set to twenty thousand. The stopping
criterion is that the relative standard deviation (RSD) of the EENS decreases
below 5% [61, 62].

The expected annual energy not supplied EENSyear in MWh is derived
from the average EENS obtained over all 4-days simulations by applying a factor
of 91.25. The expected annual curtailment Curtyear is calculated accordingly.

Then, the annual OC, the annualized IC and O&M costs of storage are
calculated respectively as follows:

OCyear = EENSyear · costENS + Curtyear · costCR (18)

ICyear =
r(1 + r)LE

(1 + r)LE − 1
· (cen · SoCmax + cpow · chmax) (19)

O&Myear = 0.03 · ICyear (20)

where r = 5% and LE=13 years. The case without any batteries is used as
the baseline. Since this work investigates the potential benefits deriving from
the installation and operation of storage devices in HV-grids, these are consid-
ered cost-effective if they enable a reduction of OC that is higher than their
equivalent annual costs EAC, where EAC = ICyear + O&Myear. The EAC is
the cost per year of owning, operating, and maintaining an asset over its entire
expected life. It is often used to assess if a project is financially viable [63]. The
optimal total size of the storage devices to be installed is evaluated according
to the procedure described in Section 4.1. An alternative approach could be the
maximization of the gap between EAC and OC, but it would shift the focus to
more economic aspects, and it would limit the potential improvements in terms
of system reliability and use of renewables. Hence, further financial analysis,
e.g., detailed business plans and speculative use of storage devices by the TSO
are out of the scope of this paper.

5.4. DC load flow for Siting

Given the outputs coming from the sizing procedures and focusing on the grid
structure under investigation, a DC optimal power flow (OPF) is run to mini-
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mize the real-time OC. The flow on a line between nodes i and j during hour
h, P (i, j)h, is defined as:

P (i, j)h = PB · (θi − θj)/(xi,j) (21)

where θi, xi,j , and PB are the voltage phase angle at node i, the reactance of
the edge ij, and a base power of 100 MW, respectively.

The objective function is formulated as follows:

min

{
costCR ·

[∑
s∈S

(PMC,s,h − Pf,s,h)+
∑
w∈W

(PMC,w,h − Pf,w,h)

]
+

+ costEENS ·

[∑
l∈L

(Dreal,l,h −Dl,h)

]} (22)

where Pf,t,h and Pf,r,h are the conventional and renewable productions resulting
from the sizing procedure, and Dreal,l,h are the nodal load values obtained from
Dreal,h by using the percentages proposed in [52].

The objective function in Equation (22) is subject to the following linear
constraints:

P (t, j)h = Pf,t,h ∀t ∈ T (23)

0 ≤ Pf,r,h = P (r, j)h ≤ PMC,r,h ∀r ∈ S ∪W (24)

0 ≤ Dl,h = P (i, l)h ≤ Dreal,l,h ∀l ∈ L (25)

−c(i, j) ≤ P (i, j)h ≤ c(i, j) ∀(i, j) ∈ E (26)∑
(i,n)∈E

P (i, n)h =
∑

(n,j)∈E

P (n, j)h (27)

max

{
(−chmax)/(ηch);−(SoCmax

b − SoCb,h)/(ηch)

}
≤ P (b, i)h ≤

min

{
chmax · ηdis; (SoCb,h − SoCmin

b ) · ηdis
}

∀b ∈ B
(28)

∑
t∈T

Pf,t,h +
∑

r∈S∪W
Pf,r,h +

∑
b∈B

P (b, j)h =
∑
l∈L

Dl,h (29)

−π/2 ≤ θi,h ≤ π/2 ∀i ∈ V \ s (30)

θs,h = 0 (31)

Constraints (23), (24), and (25) tie the power supplied from or to external
nodes to the flow on the connected virtual edge. Renewable energy injected into
the grid is bounded by the available one (Equation (24)), and loads cannot be
provided with more power than requested (Equation (25)). Equation (26) limits
power flowing on lines to their capacity. First, c(i, j) is set equal to CR(i, j)
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for all real edges; if there is no feasible solution, then the power flow for the
current hour is run again with c(i, j) = LTR(i, j). As a last resort, the capacity
limit is set equal to ER; if the simulation does not succeed, i.e., no solution
is found that satisfies all linear constraints and bounds, the program records a
failure and goes to the next time-step. When a line is operated above its CR
limit, it is considered in overloading but still in a secure state, whereas it is in
emergency if above its LTR. Equation (27) guarantees the flow conservation at
inner nodes, while Equation (28) determines the power flowing from or to bat-
teries. Equation (29) guarantees supply-demand balance. Transmission losses
are neglected. Equations (30) and (31) refer to phase angle constraints, where
s is the slack node, and are required to solve the DC OPF problem.

6. Test Cases

Eight grids with different topologies are used as test-cases. A modernized IEEE
RTS-96 bus, including Open Cycle Gas Turbines, Combined Cycle Gas Turbines,
and Integrated Gasification Combined-Cycle generators, is used as reference
network to build the others [52, 64]. This bus has an installed conventional
generation capacity of 10.2 GW, to which we added 5.9 GW of RES plants, of
which 5.25 GW are 250-MW large-scale wind farms, while the remaining power
comes from PV-panels. The grid has a total transmission capacity of around
55.9 GW in CR and of 63.7 GW in LTR. From a topological point of view, the
modified IEEE-RTS 96 has order 209 (that is the total number of nodes; 88 are
inner nodes) and size 244 (that is the total number of edges; 123 are real edges),
see Figure 1a. The average node degree 〈k〉 and clustering coefficient C of the
core are 2.80 and 0, respectively. In particular, C = 0 means that the graph
shows no clusters, i.e., it is a triangle-free graph.

Starting from the modified IEEE-RTS 96, seven grids are generated to inves-
tigate to what extent the topological structure can affect the system reliability
in terms of EENS and use of RES energy. They have the same order and total
transmission capacity, while the number of edges and the average node degree
vary to allow for different shapes. As the reference bus has 〈k〉 = 2.8, com-
paring grids with such an average degree is the fair choice; hence, we generate
one random graph with 〈k〉 ≈ 2.8. Preferential-attachment and small-world
networks require a fair amount of manual work to be generated with similar
characteristics. We opt for networks with core average degree of 2 and 4. The
clustering coefficient and small-worldenss values are calculated a posteriori till
the right shape of the network is identified. The CR and LTR values for line
power capacity are calculated as the average ones of the IEEE-RTS 96, given the
test case size. Real edge weights are assigned by following the sequence of line
reactances in the IEEE-RTS 96. Table 2 summarizes the main characteristics
of test cases core.

Three random graphs are built according to one of the two model proposed
by Erdős and Rényi in [65] to create the core of the grid. Two parameters are
needed, i.e., order and size. If the resulting graph is disconnected, that means
there is at least one pair of nodes such that no path has those nodes as endpoints,
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Table 2: TEST CASES OVERVIEW

ID Size 〈k〉 C S-W Av.CR Av.LTR
IEEE 123 2.8 0 7
RG 127 ≈ 2.8 0.066 7 417 501

RG4 176 4 0.037 7 301 362
PA4 173 ≈ 4 0.219 36.64 306 368
SW4 176 4 0.150 33.86 301 362
RG2 102 ≈ 2.3 0.023 7 519 624
PA2 87 ≈ 2 0 7 608 732
SW2 88 2 0 7 601 723

For each test case, the following parameters are reported: size, average node degree, clustering
coefficient, and small-world properties (yes 3or no 7) of the core; average continuous rating
and long-term emergency rating of real edges.

one or more edges are added to get a connected core. The order is set equal to
88, while the size of the core is chosen to have 〈k〉 ≈ 2.8, 〈k〉 ≈ 2, and 〈k〉 = 4.
These graphs are referred to as RG, RG2, and RG4, (see Figure 1b).

The preferential attachment model of Barabási-Albert [66] is based on the
idea that whenever a new node is added to the grid and linked to m other
nodes, those with a higher degree are preferred for connection. We create two
graphs whose cores have a preferential attachment structure; the order of the
core is in both cases 88, while m is once 1 and once 2, resulting in 〈k〉 ≈ 2 and
〈k〉 ≈ 4. The final graphs are identified as PA2 and PA4; the former is shown
in Figure 1c.

The small-world grids are built according to the model proposed by Watts
and Strogatz [57], based on a “random rewiring procedure.” Starting from a
regular lattice, each edge is rewired with a random probability p ∈ [0, 1]. Thus,
the resulting graph can be regular (p = 0), random (p = 1), or show intermediate
properties. Three parameters are needed, i.e., order, p, and 〈k〉. The first two
parameters are set for both networks equal to 88 and 0.4, respectively, while 〈k〉
can be equal to 2 or 4; the corresponding graphs are referred to as SW2 and
SW4. The latter is represented in Figure 1d.

7. Results

The model and the objective functions presented in Section 5 have been im-
plemented in MATLAB. Taking grid descriptions, expected load demand, and
renewable production as input, we follow the described four phases of power flow
simulation. Both the sizing and siting parts are linear programming problems;
in the former, the “linprog” solver is used, while in the latter, due to the higher
complexity of the constraints, the “GNU GLPK” library is preferred, by means
of the GLPKMEX interface [67]. Graphs have been built and analyzed with the
MATLAB Tools for Network Analysis available online, in particular, we use [68].
The Monte Carlo simulations have been run on one node Intel Xeon, 2.5 GHz of
the Peregrine cluster of the University of Groningen [69]; for the DC-load flow
simulations, the configuration of the computer hardware was: CPU Intel Core
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(a) Modified IEEE-RTS 96 (b) RG with core size 127.

(c) PA graph with 〈k〉 ≈ 2
(d) SW graph with 〈k〉 = 4

Figure 1: Visualization of the test cases. Conventional generators are black nodes, PV-farms
are yellow, wind farms are green, loads are red, and inner nodes are blue. All edges are the
same color; the real edges connect two inner nodes (blue), while the virtual edges link an
external node (non-blue node) to an inner one (blue).

i7-6600 U, 2.60 GHz, with 16 GB ram, running Windows 10 Pro. The longest
MC simulation has run for 12h 10min and 20000 4-days iterations, while the
shortest one for 1h 40 min and 2000 iterations. The running time of DC-load
flow simulations for the siting of the optimal storage capacity varied between 1h
50 min and 5h, depending on the grid topology and siting policy. The MATLAB
scripts developed for this work and the complete data set of results are available
on request. A reduced data set is available in the electronic Appendix B.

7.1. Sizing of storage

The first goal of the simulations is to determine the optimal cost-effective size
of storage that minimizes the expected OC, i.e., the total value of curtailed
renewable energy and EENS. The storage considered in this work is megawatt-
scale NaS system for energy-intensive application, whose all-inclusive cost of
investment is 500 ke/ MWh [48]. The EAC, i.e. the costs per year of owning,
operating, and maintaining a storage device over its entire expected life, of 8
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different sizes are compared with the reduction in OC enabled by the use of
storage, as shown in Figure 2.

The optimal storage has a power capacity equal to 20% of installed RES,
i.e., chmax = 1200 MW, and energy capacity SoCmax = 7200 MWh, given an
energy to power ratio of 6 and ηch = ηdis = 87% [48]. The convergence criterion
is met after 5 037 iterations. Assuming the single busbar model of the modified
IEEE-RTS 96 without any batteries as the baseline, the use of the optimal-sized
storage reduces the EENS from 1304 ppm to 516 ppm (-60%) and the annual
RES curtailment from 34.5 GWh to 31 MWh (-99.9%).
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Figure 2: Cost-effectiveness of energy storage devices: equivalent annual costs of energy
storage devices are compared with the reduction in OC enhanced by their use.

The storage exploitation in terms of power and energy is shown in Figure 3.
As one can see, the power capacity is fully exploited in only 20 hours, consid-
ering both charging and discharging phases, during which roughly 12 GWh of
renewable energy are saved, and 9 GWh of load shedding are avoided. The
maximum recorded state of charge is about 85% of SoCmax.
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Figure 3: Storage exploitation: number of hours when stored energy and power ex-
changed with the grid are within the different percentages of energy and power capacities.
SoCmin = 0.1SoCmax. The hours are counted over 5 037 iterations. The storage is consid-
ered “fully exploited” when the exchanged power is ≥ 90% of power capacity
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7.2. The effects of different topologies

The next evaluation is investigating the topological effects. Eight grids with
different topologies are used as test-cases to simulate how the power would flow,
given the unit-commitment resulting from the operation phases. The influence of
grid’s structure on its performances is investigated, considering the case without
storage as reference.

7.2.1. From single busbar model to constrained grids

The limited line capacities in Equation (26) and the constraint on flow-conser-
vation at inner nodes in Equation (27) significantly affect the performances, as
one can see in Table 3. The values of EENS and RES curtailment resulting from
our simulations are higher than in actual systems, where the grids are designed
and developed according to long-term load forecasting. The small-world grid
with 〈k〉 = 4 shows the lowest increases in EENSyear and Curtyear, followed
by the optimized IEEE-RTS 96 and the PA graph with 〈k〉 = 4. As the network
structure is neglected in the single busbar model, the only reason that can lead to
load shedding is the shortage of power, which means that the available capacity
is not enough to satisfy the request. On the contrary, when constrained graphs
are considered, load shedding can be caused also by the limited transmission
capacity and the non-existence of feasible solution. In the first case, only part
of the load can be supplied due to the limited power that the lines can carry; in
the second one, the GLPK solver cannot find a feasible solution, i.e., a solution
to the optimization problem formulated in Equation (22) that satisfies all the
constraints and bounds in Equation (23)-(31) [70]; hence, the hourly load is
not fully met. In particular, this happens when using the modulation margin
of conventional generators and curtailing RES output is still not sufficient to
satisfy the node balance constraint and/or to keep the lines load below the LTR.
The incidence of the three causes for load shedding is reported in Figure 4.

Table 3: GRID PERFORMANCES FROM SINGLE BUSBAR MODEL TO CONSTRAINED
GRIDS

ID Annual EENS Annual Curtailment
SB 8.08E+04 MWh/y 3.46E+04 MWh/y

IEEE +65% +101%
RG ≥+350% ≥+350%
RG4 ≥+350% ≥+350%
PA4 +178% ≥+350%
SW4 +58% +85%
RG2 ≥+350% ≥+350%
PA2 +317% ≥+350%
SW2 ≥+350% ≥+350%

From single busbar model (SB) to constrained grids: increases in EENS and curtailment.

The lack of power is always the same if expressed in absolute value since the
level of production of each unit is determined during the operation phases, but
it has a greater impact on the grids for which the solver can always generate
a feasible solution, i.e., SW4, IEEE, and PA4. Moreover, those cases never
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experience an emergency state; in other words, it is always possible to run the
DC-load flow keeping all lines within their LTR. Among those three grids, the
PA4 has the highest EENS due to limited transmission capacity. Among the
graphs with 〈k〉 ≈ 2, the PA2 shows the best results; for just 32 hours there
is no solution to the power flow problem, which is less than 0.02% of the total
number of time-steps, while RG2 and SW2 fail in 65% and 82% of cases. In all
random graphs and in SW2, indeed, the non-existence of feasible solutions is
responsible for more than 99% of total EENS. The increase in curtailed energy
is tied to the higher energy not supplied since only renewable power can be
limited to balance a lower demand.
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Figure 4: Load shedding causes: shortage of power, infeasibility, and limited transmission
capacity. The incidence is expressed in % of the total expected energy not supplied.

7.2.2. Siting of storage devices

To identify the most stressed lines and the relevant nodes, the metrics introduced
in Equations (1) and (2) are applied and averaged after running the DC-power
flow of simulations without storage on each of the eight grids. Siting policies
presented in Section 4.2 are employed to locate the batteries in every network,
and the effects of their location on system reliability are compared, addressing
our third objective.

First of all, some siting policies may turn out to be counter-productive when
compared to the system’s performances before storage’s introduction. By com-
paring the variation of OC with EAC, in some solutions not even the optimal-
sized storage is cost-effective. This is the case with all but “10 PTDF” siting
policy in RG4, with the “10 loads” policy in RG, and with the “10 loads” and
the centralized policies in RG2. Moreover, RG, RG4, RG2, and SW2 keep fail-
ing in a significant portion of hours, i.e., on average > 24%, > 15%, > 65%,
and > 72%, respectively. Their output data are at least two orders of magni-
tude higher than of the other configurations, hence the comparability is limited.
Consequently, the effects of different locations are investigated among four test-
cases, i.e., IEEE, PA4, SW4, and PA2. The performances in terms of EENS
and annual RES curtailment are shown in Figures 5a and 5b.

On average the major reductions in EENS and curtailed energy are achieved
when decentralized batteries are located by means of PTDF matrices, with
a mean decrease of -68.5% and -91.7% with respect to the scenarios without
storage, respectively. This configuration is particularly successful with the PA4
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Figure 5: Effects of siting policies on four test-cases: performances in terms of EENS and
annual RES curtailment

grid; this case not only shows the lowest annual values of EENS and curtailment,
but it is also the only case always solved by keeping the power flow within the
continuous rating of all lines. Among all grids, the IEEE-RTS 96 benefits the
most from storage introduction, with an average improvement in satisfied load
of +66.4%, followed by SW4 with +62.7%. The centralized solution works fine
only for the IEEE grid, while it gives the worst results on the other networks.
In particular, it significantly affects the PA2 performances, by almost doubling
the time-steps with no feasible solution, from 32 to 60. On the contrary, all
others siting policies improve them, resulting in zero failure with “10 Cf” and
“10 loads” policies. These two configurations show comparable impact in terms
of EENS and failures.

Regarding the curtailment of renewable energy, one can see in Figure 5b that
the centralized policy is the worst in almost all scenarios. When considering PA2
grid, it scores even lower than the case without batteries (curtailment increases
of +64%). As already noticed, on average the results of the PTDF-based policy
are the best, with a significant margin for the IEEE and PA4 grids.

Lastly, the effects of the PTDF-based policy on line overloading are inves-
tigated. The most successful results are obtained in the PA4 grid. Without
storage, this case did not experience any failures or emergencies, but ten lines
were overloaded in several time-steps. After installing batteries according to
the PTDF-based policy, all simulations are solved by keeping the lines within
their CR, avoiding any risk of congestion. The PA2 and SW4 grid show good
results in terms of lines in emergency state; in both cases, this policy assures the
lowest number of records. A reduction in overloading states of three of the lines
connecting main hubs in PA2 is also observed. Only with this configuration, in
the IEEE-RTS 96, there are some hours with no feasible solution and multiple
records of emergency states, though less than 20 ppm of all simulations.
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8. Conclusions

In order to guarantee the continuity of supply and the security and reliabil-
ity of the current and future electricity system, there is the need to manage
the growing amount of renewable sources connected to high voltage networks.
Real-time weather conditions and load demand can significantly diverge from
expected ones, requiring to adjust the forecast operation to reduce the risk of
unsupplied load and curtailment. The present work addresses this problem by
investigating siting policies and economic consequences of adopting increasing
amount of storage systems and different topological configurations for the grid.

The results show that NaS large-scale batteries can be cost-effective if their
operation is oriented on reducing EENS and RES curtailment. For synthetic
grids these values are worse than for actual grids, given the probabilistic element
and that they are not designed for long-term load predictions. Nevertheless, if
the graph-theoretical techniques we propose here are used in combination with
long-term forecasting and actual grid needs, we expect to have a new generation
of planning tools that will rely both on robust and efficient networks allowing
for high penetration of renewables. Given the already declining trend in storage
costs [18, 19], the operations of large-scale batteries could help to overcome the
technical difficulties [5] and strong public opposition [6] that network renovation
and expansion plans may encounter. The combination of the two techniques
could be done as an extension of our previous work on modifying the topology
of existing distribution networks [71].

From a topological point of view, when comparing grids with a weakly
meshed structure and average degree 2, the existence of energy hubs signif-
icantly improves the capability of the network to work in secure state, and
enables a more effective transmission within groups of sinks and sources con-
nected to the same busbars. Among meshed networks, the small-world graph
with 〈k〉 = 4 shows the most successful results, actually even better than the
optimized IEEE-RTS 96. Unlike the RG4, both SW4 and PA4 have small-world
properties, confirming the efficiency in energy or, in general, information distri-
bution among grids with small characteristic path length and large clustering
coefficient [72, 58]. Additionally, it can be speculated that a more homogeneous
distribution of edges among the nodes works better than having few nodes with
a very high degree.

The siting analysis evidences that having one centralized storage is usually
the worst solution, as demonstrated also in [23]. It may not be possible, indeed,
to transfer all energy surplus from renewable farms scattered around the graphs
to one single node. Among the other policies, the PTDF-based one is particu-
larly successful and achieves on average the major reduction in EENS and RES
curtailment. Looking at the modified IEEE-RTS 96, the slightly worse results
in EENS (+5%) w.r.t. the centralized solution are more than compensated by
the 90% increase in the use of renewable energy.

To conclude, although it is not possible to affirm the PTDF-policy is always
the best for storage siting, it is definitely a valid approach when investigating
these kinds of problems.
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Appendix A. Monte Carlo method and probabilistic models

In the following, details about the applications of Monte Carlo method and the
models for wind and solar production are briefly illustrated.

Appendix A.1. Conventional Generators’ Availability and Power Demand

The MC technique has been largely used to study the behavior of power systems
with a probabilistic approach (e.g., [61, 73, 74, 75]), taking into account more
possible scenarios than with a deterministic method.

It is assumed that a generator can be described as a 2-state component,
“available” or “unavailable,” by means of two quantities called mean time to
failure (MTTF) and mean time to repair (MTTR). The former indicates the
length of time it is expected to last in operation before it fails. The latter
indicates the average time required to be repaired. In this work, since a 24-
hours horizon is considered, if a component fails during the day, it is considered
to be out of order for the rest of the simulation. The values are taken from [64].
At each time step and for each component, a random number A between 0 and
1 is drawn from a uniform distribution [73] and the state of the component is
determined as follows:

sth = 1 if sth−1 = 1 and A > 1/MTTF (A.1a)

sth = 0 if sth−1 = 0 or if sth−1 = 1 and A ≤ 1/MTTF (A.1b)

If sth = 1 then the generator is available, otherwise it is out of order. As one
can see, the state at time-step h depends on the state at the previous one h-1,
hence it is a sequential version of the Monte Carlo technique.

To assess the real-time total consumer demand, the hourly forecasting error
eMC,h is drawn by a normal distribution with mean value µ = 0 and standard
deviation σ = 0.01. The real-time demand is calculated considering the cumu-
lative error of all previous time-steps, as Dreal,h = Dex,h +

∑h
j=1 eMC,jDex,j .

Appendix A.2. Wind and Solar Production

The available wind production Pav,w,h is determined by assuming a cubic-type
dependency between wind speed and power output of a wind turbine, as follows:

Pav,w,h =


0 if ws,h ≤ vin or ws ≥ voff

Pmax
r (w3

s,h − v3
in)/(v3

r − v3
in) if vin < ws < vr

Pmax
r if vr ≤ ws,h < voff

(A.2a)

(A.2b)

(A.2c)

where ws,h is the wind speed at time-step h; vr, vn, and voff are the rated,
cut-in, and cut-off velocity of the wind turbine, respectively. In the forecasting
phase, ws,h is expected to be equal to the mean seasonal speed at each time-step,
while in real-time operation it is drawn by a Weibull probability distribution.
Its shape and form parameters are chosen in order to give the best fit to the
expected seasonal mean wind speed [76, 77].
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The solar model takes into account the panels’ location and seasonal con-
dition. The solar radiation model is based on the simple sky model proposed
in [78] and it is formulated as follows:

Is,h =

{
0 if h ≤ hsr or h ≥ hss

Smax,s,hsin{π(h− hsr)/(hss − hsr)} if hsr < h < hss

(A.3a)

(A.3b)

where Is,h is the solar irradiance (MW/m2) at time h, hsr and hss are the
sunrise and sunset time, respectively, and Smax,s,h is the peak solar irradiance
(MW/m2). In this work, as the panels are located on terrestrial surface, Smax,s,h

is computed as the hourly maximum terrestrial irradiance ITmax,h times the
hourly clearness index Cs,h. ITmax,h is a function of the peak value on terrestrial
surface I0, eccentricity factor E0, and zenith angle θz,h, as follows:

ITmax,h = I0E0cosθz,h = (1000 · 10−6)(1 + 0.033cos(2πdn/365))cosθz,h (A.4)

where dn is the number of the simulated days in the year. The zenith angle is
calculated according to Algorithm 3 in [79] and it depends on the local time,
position, pressure, and temperature. Cs,h can be defined as the portion of
sky not covered by clouds. Hourly values for each solar farms are drawn by a
modified gamma distribution as proposed in [80, 79]. The maximum value of
the index varies over the four representative days in order to take into account
seasonal variability. Finally, assuming that the panels are always perpendicular
to solar beams, the power output of an array of solar panels is expressed as
Ps,h = Is,hSsηs, where Ss and ηs are the surface (m2) and efficiency of the
array, respectively.

Appendix B. Supplementary data

Supplementary numerical data are reported and discussed in the online ver-
sion of this paper.

Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research
under the NWO MERGE project, contract no. 647.002.006 (www.nwo.nl).

References

[1] Eurostat (European Commission), Smarter, greener, more inclusive?
Indicators to support the Europe 2020 strategy: 2016 edition, http:

//ec.europa.eu/eurostat/en/web/products-statistical-books/-/

KS-EZ-17-001 (2016).

[2] U.S. Department of Energy, 20% Wind energy by 2030, http://www.nrel.
gov/docs/fy08osti/41869.pdf (2008).

24



[3] T. Broeer, J. Fuller, F. Tuffner, D. Chassin, N. Djilali, Modeling framework
and validation of a smart grid and demand response system for wind power
integration, Applied Energy 113 (2014) 199–207.

[4] A. L’Abbate, F. Careri, G. Migliavacca, Transmission expansion planning
in presence of large RES penetration: The case of Italy, 2013 IEEE Greno-
ble Conference PowerTech.

[5] EPRI, Application of Storage Technology for Transmission System Sup-
port: Interim Report (2012).

[6] M. Eddy, Germany’s clead-energy plan faces resistance to power lines,
http://www.nytimes.com (2014).

[7] G. Giannuzzi, F. Bassi, M. Giuntoli, P. Pelacchi, D. Poli, Mechanical be-
haviour of multi-span overhead transmission lines under dynamic thermal
stress of conductors due to power flow and weather conditions, Interna-
tional Review on Modelling and Simulations (IREMOS) 6 (4).

[8] M. Hedayati, J. Zhang, K. W. Hedman, Joint transmission expansion plan-
ning and energy storage placement in smart grid towards efficient integra-
tion of renewable energy, 2014 IEEE PES T&D Conference and Exposition
(2014) 1–5.

[9] A. D. Del Rosso, S. W. Eckroad, Energy storage for relief of transmission
congestion, IEEE Transactions on Smart Grid 5 (2) (2014) 1138–1146.

[10] N. Li, C. Uckun, E. M. Constantinescu, J. R. Birge, K. W. Hedman, A. Bot-
terud, Flexible Operation of Batteries in Power System Scheduling with
Renewable Energy, IEEE Transactions on Sustainable Energy 7 (2) (2016)
685–696.

[11] D. O. Akinyele, R. K. Rayudu, Review of energy storage technologies for
sustainable power networks, Sustainable Energy Technologies and Assess-
ments 8 (2014) 74–91.

[12] K. A. Zach, H. Auer, Bulk energy storage versus transmission grid invest-
ments: Bringing flexibility into future electricity systems with high pen-
etration of variable RES-electricity BT - 9th International Conference on
the European Energy Market, EEM 12, May 10, 2012 - May 1 (2012) 1–5.

[13] G. Graditi, M. G. Ippolito, E. Telaretti, G. Zizzo, Technical and economical
assessment of distributed electrochemical storages for load shifting applica-
tions: An Italian case study, Renewable and Sustainable Energy Reviews
57 (2016) 515–523.

[14] M. Rosas-Casals, Power grids as complex networks. Topology and fragility,
COMPENG 2010 (2010) 21–26.

25



[15] C. Brancucci Mart́ınez-Anido, R. Bolado, L. De Vries, G. Fulli, M. Van-
denbergh, M. Masera, European power grid reliability indicators, what do
they really tell?, Electric Power Systems Research 90 (2012) 79–84.

[16] M. Giuntoli, P. Pelacchi, D. Poli, On the use of simplified reactive power
flow equations for purposes of fast reliability assessment, in: Eurocon 2013,
2013, pp. 992–997.

[17] G. A. Pagani, From the grid to the smart grid, topologically, Ph.D. thesis,
relation: http://www.rug.nl/ Rights: University of Groningen (2014).

[18] D. Manz, R. Walling, N. Miller, B. Larose, R. D’Aquila, B. Daryanian, The
grid of the future: Ten trends that will shape the grid over the next decade,
IEEE Power and Energy Magazine 12 (3) (2014) 26–36.

[19] Energy Storage Association, Energy Storage: Falling Costs,
Major Gains, http://energystorage.org/news/esa-news/

energy-storage-falling-costs-major-gains (2017).

[20] M. Korpaas, A. T. Holen, R. Hildrum, Operation and sizing of energy
storage for wind power plants in a market system, International Journal of
Electrical Power and Energy System 25 (2003) 599–606.

[21] A. Berrada, K. Loudiyi, Operation, sizing, and economic evaluation of stor-
age for solar and wind power plants, Renewable and Sustainable Energy
Reviews 59 (2016) 1117–1129.

[22] K. Dvijotham, M. Chertkov, S. Backhaus, Storage sizing and placement
through operational and uncertainty-aware simulations, Proceedings of the
Annual Hawaii International Conference on System Sciences (2014) 2408–
2416.

[23] M. Ghofrani, A. Arabali, M. Etezadi-Amoli, M. Fadali, Energy storage ap-
plication for performance enhancement of wind integration, IEEE Trans-
actions on Power Systems 28 (4) (2013) 4803–4811.

[24] Z. Gao, P. Wang, L. Bertling, J. Wang, Sizing of energy storage for power
systems with wind farms based on reliability cost and wroth analysis, IEEE
Power and Energy Society General Meeting (2011) 1–7.

[25] P. Harsha, M. Dahleh, Optimal management and sizing of energy storage
under dynamic pricing for the efficient integration of renewable energy,
IEEE Transactions on Power Systems 30 (3) (2015) 1164–1181.

[26] Y. Zhang, S. Zhu, a. a. Chowdhury, Reliability modeling and control
schemes of composite energy storage and wind generation system with ad-
equate transmission upgrades, IEEE Transactions on Sustainable Energy
2 (4) (2011) 520–526.

26



[27] C. Root, H. Presume, D. Proudfoot, L. Willis, R. Masiello, Using battery
energy storage to reduce renewable resource curtailment, 2017 IEEE Power
and Energy Society Innovative Smart Grid Technologies Conference, ISGT
2017 (2017) 1–5doi:10.1109/ISGT.2017.8085955.

[28] L. Fiorini, G. A. Pagani, P. Pelacchi, D. Poli, M. Aiello, Sizing and siting of
large-scale batteries in transmission grids to optimize the use of renewables,
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
7 (2) (2017) 285–294.

[29] H. Pandzic, Y. Wang, T. Qiu, Y. Dvorkin, D. S. Kirschen, Near-Optimal
Method for Siting and Sizing of Distributed Storage in a Transmission
Network, IEEE Transactions on Power Systems (2014) 1–13.

[30] S. Wogrin, D. F. Gayme, Optimizing Storage Siting, Sizing, and Technology
Portfolios in Transmission-Constrained Networks, IEEE Transactions on
Power Systems 30 (6) (2015) 3304–3313.

[31] M. Ghofrani, A. Arabali, S. Member, M. Etezadi-amoli, L. S. Member,
M. S. Fadali, S. Member, A Framework for Optimal Placement of Energy
Storage Units Within a Power System With High Wind Penetration 4 (2)
(2013) 434–442.

[32] R. Konishi, M. Takahashi, Optimal allocation of photovoltaic systems and
energy storages in power systems considering power shortage and surplus,
9th International: 2014 Electric Power Quality and Supply Reliability Con-
ference, PQ 2014 - Proceedings (2014) 127–132.

[33] D. P. Chassin, C. Posse, Evaluating North American electric grid reliability
using the Barabási-Albert network model, Physica A: Statistical Mechanics
and its Applications 355 (2-4) (2005) 667–677.
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