82 research outputs found

    New kinematic models for Pacific‐North America Motion from 3 Ma to Present, II: Evidence for a “Baja California Shear Zone”

    Get PDF
    We use new models for present‐day Pacific‐North America motion to evaluate the tectonics of offshore regions west of the Californias. Vandenburg in coastal Alta California moves at the Pacific plate velocity within uncertainties (∌1 mm/yr) after correcting for strain accumulation on the San Andreas and San Gregorio‐Hosgri faults with a model that includes a viscoelastic lower crust. Modeled and measured velocities at coastal sites in Baja California south of the Agua Blanca fault, a region that most previous models consider Pacific plate, differ by 3–8 mm/yr, with coastal sites moving slower that the Pacific plate. We interpret these discrepancies in terms of strain accumulation on known on‐shore faults, combined with right lateral slip at a rate of 3–4 mm/yr on additional faults offshore peninsular Baja California in the Pacific. Offshore seismicity, offset Quaternary features along the west coast of Baja California, and a discrepancy between the magnetically determined spreading rate in the Gulf Rise and the total plate rate from a geological model provide independent evidence for a “Baja California shear zone.

    GPS Constraints on the Mw = 7.5 Ometepec Earthquake Sequence, Southern Mexico: Coseismic and Post-Seismic Deformation

    Get PDF
    We use continuous GPS measurements from 31 stations in southernMexico to model coseismic slip and post-seismic deformation from the 2012 March 20 Mw = 7.5 Ometepec earthquake, the first large thrust earthquake to occur below central Mexico during the modern GPS era. Coseismic offsets ranging from ∌280 mm near the epicentre to 5 mm or less at sites far from the epicentre are fit best by a rupture focused between ∌15 and 35 km depth, consistent with an independent seismological estimate. The corresponding geodetic moment of 1.4 × 1020 N·m is within 10 per cent of two independent seismic estimates. Transient post-seismic motion recorded by GPS sites as far as 300 km from the rupture has a different horizontal deformation gradient and opposite sense of vertical motion than do the coseismic offsets. A forward model of viscoelastic relaxation as a result of our new coseismic slip solution incorrectly predicts uplift in areas where post-seismic subsidence was recorded and indicates that viscoelastic deformation was no more than a few per cent of the measured post-seismic deformation. The deformation within 6 months of the earthquake was thus strongly dominated by fault afterslip. The post-seismic GPS time-series are well fit as logarithmically decaying fault afterslip on an area of the subduction interface up to 10 times larger than the earthquake rupture zone, extending as far as 220 km inland. Afterslip had a cumulative geodetic moment of 2.0 × 1020 N·m, ∌40 per cent larger than the Ometepec earthquake. Tests for the shallow and deep limits for the afterslip require that it included much of the earthquake rupture zone as well as regions of the subduction interface where slow slip events and non-volcanic tremor have been recorded and areas even farther downdip on the flat interface. Widespread afterslip below much of central Mexico suggests that most of the nearly flat subduction interface in this region is conditionally stable and thus contributes measurable transient deformation to large areas of Mexico south of and in the volcanic belt

    A geodetic study of the 2003 January 22 TecomĂĄn, Colima, Mexico earthquake

    Get PDF
    We use coseismic displacements and aftershock information from Global Positioning System (GPS) measurements at 27 sites in western Mexico and a 12-station local seismic network to determine the characteristics of the 2003 January 22 M_w = 7.2 subduction thrust earthquake near Tecomán, Colima, Mexico. Estimates of the earthquake moment, slip direction and best-fitting slip distribution are derived by optimizing the fit to the GPS displacements for a 3-D finite element mesh that simulates the study area. The calculated moment release is 9.1 × 10^(19) N m (M_w = 7.2) , with maximum slip of 2 m at a depth of 24 km and a maximum rupture depth of 35–40 km. The inversion indicates that coseismic rupture extended downdip from depths of 9 to 40 km along a 80 km along-strike region that is bounded by the edges of the Manzanillo Trough. The optimal solution is robust with respect to plausible changes in the subduction interface geometry and differing subsets of the data. A comparison of the cumulative post-seismic slip that can be inferred separately from earthquake aftershocks and GPS measurements within a year of the earthquake indicates that 95 per cent or more of the post-seismic deformation was aseismic. Near-term post-seismic measurements indicate that slip propagated downdip to areas of the subduction interface beneath the coastline within days following the earthquake, as also occurred after the nearby M_w = 8.0 Colima-Jalisco subduction earthquake in 1995. The similar behaviours and locations of the 1995/2003 earthquake sequence to two earthquakes in June of 1932 suggests that thrust earthquakes along the subduction interface northwest of the Manzanillo Trough may trigger earthquakes in the vicinity of the Manzanillo Trough; however, our modelling of Coulomb stress changes caused by the 1995 earthquake indicate that it induced only modest unclamping of the subduction interface in the vicinity of the Tecomán rupture. In addition, GPS measurements indicate that elastic shortening characterized areas onshore from the Tecomán rupture from mid-1997 up until the time of the rupture, consistent with progressively stronger clamping of the subduction interface during this period. This precludes any obvious triggering relationship with the 1995 earthquake. The apparent coincidence of the edge of both the 1932 and 1995/2003 rupture sequences with the edge of the Manzanillo Trough may indicate that the trough is a mechanical barrier to along-strike rupture propagation. This implies a limit to the area of potential slip and hence rupture magnitude during future large earthquakes in this region

    Community infrastructure and repository for marine magnetic identifications

    Get PDF
    Magnetic anomaly identifications underpin plate tectonic reconstructions and form the primary data set from which the age of the oceanic lithosphere and seafloor spreading regimes in the ocean basins can be determined. Although these identifications are an invaluable resource, their usefulness to the wider scientific community has been limited due to the lack of a central community infrastructure to organize, host, and update these interpretations. We have developed an open-source, community-driven online infrastructure as a repository for quality-checked magnetic anomaly identifications from all ocean basins. We provide a global sample data set that comprises 96,733 individually picked magnetic anomaly identifications organized by ocean basin and publication reference, and provide accompanying Hellingerformat files, where available. Our infrastructure is designed to facilitate research in plate tectonic reconstructions or research that relies on an assessment of plate reconstructions, for both experts and nonexperts alike. To further enhance the existing repository and strengthen its value, we encourage others in the community to contribute to this effort

    BioRock:new experiments and hardware to investigate microbe–mineral interactions in space

    Get PDF
    In this paper, we describe the development of an International Space Station experiment, BioRock. The purpose of this experiment is to investigate biofilm formation and microbe–mineral interactions in space. The latter research has application in areas as diverse as regolith amelioration and extraterrestrial mining. We describe the design of a prototype biomining reactor for use in space experimentation and investigations on in situ Resource Use and we describe the results of pre-flight tests

    Survival of lichens and bacteria exposed to outer space conditions - Results of the Lithopanspermia experiments

    Get PDF
    n the space experiments Lithopanspermia, experimental support was provided to the likelihood of the lithopanspermia concept that considers a viable transport of microorganisms between the terrestrial planets by means of meteorites. The rock colonising lichens Rhizocarpon geographicum and Xanthoria elegans, the vagrant lichen Aspicilia fruticulosa, and endolithic and endoevaporitic communities of cyanobacteria and bacteria with their natural rock substrate were exposed to space for 10 days onboard the Biopan facility of the European Space Agency (ESA). Biopan was closed during launch and re-entry. In addition, in the Stone facility, one sample of R. geographicum on its natural granitic substrate was attached at the outer surface of the re-entry capsule close to the stagnation point, only protected by a thin cover of glass textolite. Post-flight analysis, which included determination of the photosynthetic activity, LIVE/DEAD staining, and germination capacity of the ascospores, demonstrated that all three lichen were quite resistant to outer space conditions, which include the full spectrum of solar extraterrestrial electromagnetic radiation or selected wavelength ranges. This high resistance of the lichens to space appears to be due to their symbiotic nature and protection by their upper pigmented layer, the cortex. In contrast, the rock- or halite-inhabiting bacteria were severely damaged by the same exposure. After atmospheric re-entry, the granite of the Stone sample was transformed into a glassy, nearly homogenous material, with several friction striae. None of the lichen cells survived this re-entry process. The data suggest that lichens are suitable candidates for testing the concept of lithopanspermia, because they are extremely resistant to the harsh environment of outer space. The more critical event is the atmospheric re-entry after being captured by a planet. Experiments simulating the re-entry process of a microbe-carrying meteoroid did not show any survivors

    Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF
    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format

    GPS-determination of along-strike variation in Cascadia margin kinematics: Implications for relative plate motion, Subduction zone coupling, and permanent deformation

    Get PDF
    High‐precision GPS geodesy in the Pacific Northwest provides the first synoptic view of the along‐strike variation in Cascadia margin kinematics. These results constrain interfering deformation fields in a region where typical earthquake recurrence intervals are one or more orders of magnitude longer than the decades‐long history of seismic monitoring and where geologic studies are sparse. Interseismic strain accumulation contributes greatly to GPS station velocities along the coast. After correction for a simple elastic dislocation model, important residual motions remain, especially south of the international border. The magnitude of northward forearc motion increases southward from western Washington (3–7 mm/yr) to northern and central Oregon (∌9 mm/yr), consistent with oblique convergence and geologic constraints on permanent deformation. The margin‐parallel strain gradient, concentrated in western Washington across the populated Puget Lowlands, compares in magnitude to shortening across the Los Angeles Basin. Thus crustal faulting also contributes to seismic hazard. Farther south in southern Oregon, north‐westward velocities reflect the influence of Pacific‐North America motion and impingement of the Sierra Nevada block on the Pacific Northwest. In contrast to previous notions, some deformation related to the Eastern California shear zone crosses northernmost California in the vicinity of the Klamath Mountains and feeds out to the Gorda plate margin

    No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction

    Get PDF
    Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravityrelated effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth

    Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth's atmosphere: the STONE 6 experiment

    Get PDF
    If life ever appeared on Mars, could we find traces of primitive life embedded in sedimentary meteorites? To answer this question, a 3.5 billion-year-old volcanic sediment containing microfossils was embedded in the heat shield of a space capsule in order to test survival of the rock and the microfossils during entry into the Earth's atmosphere (the STONE 6 experiment). The silicified volcanic sediment from the Kitty's Gap Chert (Pilbara, Australia) is considered to be an excellent analogue for Noachian-age volcanic sediments. The microfossils in the chert are also analogues for potential martian life. An additional goal was to investigate the survival of living microorganisms (Chroococcidiopsis) protected by a 2 cm thick layer of rock in order to test whether living endolithic organisms could survive atmospheric entry when protected by a rocky coating. Mineralogical alteration of the sediment due to shock heating was manifested by the formation of a fusion crust, cracks in the chert due to prograde and retrograde changes of ? quartz to ? quartz, increase in the size of the fluid inclusions, and dewatering of the hydromuscovite-replaced volcanic protoliths. The carbonaceous microfossils embedded in the chert matrix survived in the rock away from the fusion crust but there was an increase in the maturity index of the kerogen towards the crust. We conclude that this kind of sediment can survive atmospheric entry and, if it contains microfossils, they could also survive. The living microorganisms were, however, completely carbonised by flame leakage to the back of the sample and therefore non-viable. However, using an analytical model to estimate the temperature reached within the sample thickness, we conclude that, even without flame leakage, the living organisms probably need to be protected by at least 5 cm of rock in order to be shielded from the intense heat of entry
    • 

    corecore