323 research outputs found

    No difference in stroke knowledge between Korean adherents to traditional and western medicine – the AGE study: an epidemiological study

    Get PDF
    BACKGROUND: Effective stroke intervention and risk reduction depend on the general public's awareness and knowledge of stroke. In Korea, where both traditional Oriental medicine and Western medicine are practiced, estimates of the general public's awareness and knowledge of stroke are poor. The present study sought to describe the inception cohort of the Ansan Geriatric Study (AGE study) and to determine baseline stroke awareness and preferred medical treatment for stroke in this Korean sample. METHODS: A total of 2,767 subjects selected randomly from the Ansan Geriatric Study in South Korea were questioned about stroke. Their answers were compared with their sociodemographic data and other variables. RESULTS: Only 44.8% of participants correctly identified stroke as a vascular disease in the human brain. Sudden numbness or weakness was the most frequently identified stroke warning sign (60.2%). Hypertension (66.7%) and mental stress (62.2%) were most frequently identified as stroke risk factors. The contributions of diabetes mellitus and cardiovascular disease to stroke were underestimated; they were identified as risk factors by 28.3% and 18.6% of participants, respectively. The predictors for poor knowledge of stroke warning signs and risk factors were similar irrespective of preference for Western or Oriental medical treatment, and included those with lower levels of education and inaccurate definition of stroke. Television and radio (40.3%) were the most frequent sources of stroke information for both groups. CONCLUSION: This study shows that knowledge of stroke is similar among Koreans with preferences for either Western or Oriental medical treatment and that misunderstandings about stroke are common among the Korean elderly. In order to prevent and manage stroke effectively, public health education regarding basic concepts of stroke is necessary. This should target those with a lower level of education and a misunderstanding of the definition of stroke

    Analysis of Signaling Mechanisms Regulating Microglial Process Movement

    Get PDF
    Microglia, the brain’s innate immune cells, are extremely motile cells, continuously surveying the CNS to serve homeostatic functions and to respond to pathological events. In the healthy brain, microglia exhibit a small cell body with long, branched and highly motile processes, which constantly extend and retract, effectively ‘patrolling’ the brain parenchyma. Over the last decade, methodological advances in microscopy and the availability of genetically encoded reporter mice have allowed us to probe microglial physiology in situ. Beyond their classical immunological roles, unexpected functions of microglia have been revealed, both in the developing and the adult brain: microglia regulate the generation of newborn neurons, control the formation and elimination of synapses, and modulate neuronal activity. Many of these newly ascribed functions depend directly on microglial process movement. Thus, elucidating the mechanisms underlying microglial motility is of great importance to understand their role in brain physiology and pathophysiology. Two-photon imaging of fluorescently labelled microglia, either in vivo or ex vivo in acute brain slices, has emerged as an indispensable tool for investigating microglial movements and their functional consequences. This chapter aims to provide a detailed description of the experimental data acquisition and analysis needed to address these questions, with a special focus on key dynamic and morphological metrics such as surveillance, directed motility and ramification

    In Vivo Imaging Reveals Distinct Inflammatory Activity of CNS Microglia versus PNS Macrophages in a Mouse Model for ALS

    Get PDF
    Mutations in the enzyme superoxide dismutase-1 (SOD1) cause hereditary variants of the fatal motor neuronal disease Amyotrophic lateral sclerosis (ALS). Pathophysiology of the disease is non-cell-autonomous: neurotoxicity is derived not only from mutant motor neurons but also from mutant neighbouring non-neuronal cells. In vivo imaging by two-photon laser-scanning microscopy was used to compare the role of microglia/macrophage-related neuroinflammation in the CNS and PNS using ALS-linked transgenic SOD1G93A mice. These mice contained labeled projection neurons and labeled microglia/macrophages. In the affected lateral spinal cord (in contrast to non-affected dorsal columns), different phases of microglia-mediated inflammation were observed: highly reactive microglial cells in preclinical stages (in 60-day-old mice the reaction to axonal transection was ∼180% of control) and morphologically transformed microglia that have lost their function of tissue surveillance and injury-directed response in clinical stages (reaction to axonal transection was lower than 50% of control). Furthermore, unlike CNS microglia, macrophages of the PNS lack any substantial morphological reaction while preclinical degeneration of peripheral motor axons and neuromuscular junctions was observed. We present in vivo evidence for a different inflammatory activity of microglia and macrophages: an aberrant neuroinflammatory response of microglia in the CNS and an apparently mainly neurodegenerative process in the PNS

    Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells

    Get PDF
    Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model cell line from human aortic endothelial cells (HAECs). Fluorescence microscopy and flow cytometry were also applied to further explore DEP-induced cytotoxicity in HAECs. Results revealed that DEPs could negatively impair cell viability and alter membrane nanostructures and cytoskeleton components in a dosage- and a time-dependent manner; and analyses suggested that DEPs-induced hyperpolarization in HAECs appeared in a time-dependent manner, implying DEP treatment would lead to vasodilation, which could be supported by down-regulation of cell biophysical properties (e.g., cell elasticity). These findings are consistent with the conclusion that DEP exposure triggers important biochemical and biophysical changes that would negatively impact the pathological development of cardiovascular diseases. For example, DEP intervention would be one cause of vasodilation, which will expand understanding of biophysical aspects associated with DEP cytotoxicity in HAECs

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo

    Get PDF
    Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca2+) concentration is important for astrocytes as Ca2+ surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca2+ activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca2+ activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca2+ dynamics by investigating two distinct EEG states (“synchronized” vs. “de-synchronized” states). We found that astrocytes in L1 had nearly twice higher Ca2+ activity than L2/3. Furthermore, Ca2+ fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca2+ activity. These results suggest that spontaneous astrocytic Ca2+ surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity

    TNFR1 inhibition with a nanobody protects against EAE development in mice

    Get PDF
    TNF has as detrimental role in multiple sclerosis (MS), however, anti-TNF medication is not working. Selective TNF/TNFR1 inhibition whilst sparing TNFR2 signaling reduces the pro-inflammatory effects of TNF but preserves the important neuroprotective signals via TNFR2. We previously reported the generation of a Nanobody-based selective inhibitor of human TNFR1, TROS that will be tested in experimental autoimmune encephalomyelitis (EAE). We specifically antagonized TNF/TNFR1 signaling using TROS in a murine model of MS, namely MOG(35-55)-induced EAE. Because TROS does not cross-react with mouse TNFR1, we generated mice expressing human TNFR1 in a mouse TNFR1-knockout background (hTNFR1 Tg), and we determined biodistribution of Tc-99m-TROS and effectiveness of TROS in EAE in those mice. Biodistribution analysis demonstrated that intraperitoneally injected TROS is retained more in organs of hTNFR1 Tg mice compared to wild type mice. TROS was also detected in the cerebrospinal fluid (CSF) of hTNFR1 Tg mice. Prophylactic TROS administration significantly delayed disease onset and ameliorated its symptoms. Moreover, treatment initiated early after disease onset prevented further disease development. TROS reduced spinal cord inflammation and neuroinflammation, and preserved myelin and neurons. Collectively, our data illustrate that TNFR1 is a promising therapeutic target in MS
    corecore