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Abstract

Introduction: Neuropathological, genetic, and biochemical studies have provided support for the hypothesis
that microglia participate in Alzheimer’s disease (AD) pathogenesis. Despite the extensive characterization of
AD microglia, there are still many unanswered questions, and little is known about microglial morphology in
other common forms of age-related dementia: particularly, dementia with Lewy bodies (DLB) and hippocampal
sclerosis of aging (HS-Aging). In addition, no prior studies have attempted to compare and contrast the microglia
morphology in the hippocampus of various neurodegenerative conditions.

Results: Here we studied cases with pathologically-confirmed AD (n = 7), HS-Aging (n = 7), AD + HS-aging (n = 4), DLB
(n = 12), and normal (cognitively intact) controls (NC) (n = 9) from the University of Kentucky Alzheimer’s
Disease Center autopsy cohort. We defined five microglia morphological phenotypes in the autopsy samples:
ramified, hypertrophic, dystrophic, rod-shaped, and amoeboid. The Aperio ScanScope digital neuropathological
tool was used along with two well-known microglial markers: IBA1 (a marker for both resting and activated microglia)
and CD68 (a lysosomal marker in macrophages/microglia associated with phagocytic cells). Hippocampal staining
analyses included studies of subregions within the hippocampal formation and nearby white matter. Using these tools
and methods, we describe variation in microglial characteristics that show some degree of disease specificity, including,
(1) increased microglia density and number in HS-aging and AD + HS-aging; (2) low microglia density in DLB; (3) increased
number of dystrophic microglia in HS-aging; and (4) increased proportion of dystrophic to all microglia in DLB.

Conclusions: We conclude that variations in morphologies among microglial cells, and cells of macrophage
lineage, can help guide future work connecting neuroinflammatory mechanisms with specific neurodegenerative
disease subtypes.
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Introduction
There is an increasing awareness that microglia may
have a pathogenic role in neurodegenerative diseases.
The discovery of genetic mutations in CD33 and
TREM2 associated with the risk of developing
Alzheimer’s disease (AD) [1–4] has heightened the inter-
est in defining microglia physiology and pathology in the
context of disease. Pio Del Rio-Hortega is credited with
early insights into microglial pathology. He recognized
that microglia are normally highly ramified and evenly
distributed throughout the brain. He also noted that the
morphology of microglia is dramatically altered in
response to central nervous system (CNS) pathology [5].
As a molecular and functionally unique population of
cells [6, 7], microglia exhibit a remarkable ability to
survey the brain and rapidly undergo a spectrum of
responses to insults or tissue damage [8, 9]. The
process by which microglia change shape, molecular
signature, and cellular physiology is defined as micro-
glia activation [5].
The clinical disease formerly referred to simply as

“Alzheimer’s disease” is, at the population level, a complex
manifestation of many different brain conditions [10].
These age-related brain pathologies include AD (character-
ized by amyloid plaques and neurofibrillary tangles), as well
as cerebrovascular disease, dementia with Lewy bodies
(DLB), and hippocampal sclerosis of aging (HS-Aging) [11].
Although each of these disorders seems to have a distinct
genetic, clinical, and pathological cluster of characteristics,
to date there has not been characterization of the microglial
responses in these conditions.
We sought to address questions related to microglial

morphology in neurodegenerative disease tissue: 1) Is
microglia pathology seen only in the presence of amyloid
or tau pathology, or can it be seen in other age-related
neurodegenerative diseases?; 2) Is there microglial re-
gional heterogeneity in the hippocampus (for example,
gray matter only)?; and, 3) Can digital neuropathological
quantification detect differences in microglia activation
in different neurodegenerative diseases? To address
these questions, we queried well-characterized brain
samples from the University of Kentucky Alzheimer’s
Disease Center (UK-ADC) cohort. Specifically, brain tis-
sue was analyzed, incorporating multiple disease condi-
tions, using two antibodies that react with microglia.
The CD68 antibody stains for a lysosomal-associated
protein in macrophages/microglia and is associated with
phagocytic cells [12, 13]. The IBA1 (ionized calcium
binding adaptor molecule 1) antibody [14] is used widely
as a pan marker for both resting and activated microglia.
Using these two widely studied microglia markers, CD68
and IBA1, we defined microglia morphologies in the
aged brain, including some features that show evidence
of disease specificity.
Materials and methods
Human subjects
Tissue samples that contained the hippocampus were ac-
quired from the UK-ADC biobank. Details of recruitment
have been described previously [15]. Information including
demographic and neuropathologic data is presented
(Table 1). The included cases (n = 39) represented a con-
venience sample subdivided into groups as: NC, HS-aging,
AD, AD+HS-aging, or DLB. Cases represented approxi-
mately age-matched sampling of the neuropathologically-
defined diseases using the following criteria: AD (Braak > IV,
high density of neocortical amyloid plaques); isocortical
subtype of DLB; and HS-Aging (cell loss and gliosis out of
proportion to plaques/tangle pathology, with TDP-43
pathology in the hippocampus).

Immunostaining
Paraffin-embedded tissue sections were cut at 10-μm-thick.
Immunohistochemical (IHC) began with microwave anti-
gen retrieval for 6 min (power 8) using Trilogy buffer (Cell
Marque; Rocklin, CA) for CD68 and Declere buffer (Cell
Marque; Rocklin, CA) for IBA1. Sections were then placed
in 3% H2O2 in methanol for 30 min. Following washes in
distilled water, sections were blocked in 5% goat serum at
room temperature for 1 h. Sections were incubated in pri-
mary antibodies IBA1 (rabbit polyclonal, 1:1,000 IHC,
Wako); CD68 (clone KP1) (1:50 IHC, Dako) overnight at
4°C. A biotinylated secondary antibody (Vector Laboratories)
was amplified using avidin-biotin substrate (ABC solution,
Vector Laboratories catalog no. PK-6100), followed by color
development in Nova Red (Vector Laboratories). Immuno-
fluorescence (IF) staining was done following microwave
antigen retrieval for 6 min (power 8) using Declere buffer
(Cell Marque; Rocklin, CA) for primary antibodies to: IBA1
(rabbit polyclonal, 1:250 IF, Wako); and PHF-1 (1:500 IHC
and IF, a kind gift from Dr Peter Davies, Bronx, NY), and vi-
sualized using appropriate secondary antibody conjugated to
an Alexafluor probe (1:200, Lifetechnologies) applied for 1 h.
A 0.1% solution of Sudan Black was used to reduce autofluo-
rescence. Slides were coverslipped using Vectashield mount-
ing medium with DAPI (Vector Labs, Burlingame, CA).

Quantitative image analysis
Three different methods of quantitative image analysis
were used in this study: 1) digital positive pixel algo-
rithm, 2) digital nuclear algorithm, 3) and manual
counting of IBA1+ microglia (only in CA1 region).
Briefly, the Aperio ScanScope XT digital slidescanner
was used to image the entire stained slide at 40x magni-
fication to create a single high-resolution digital image.
The Aperio positive pixel count algorithm (version 9)
was used to quantify the amount of specific staining in
the region, and the Aperio nuclear algorithm (version 9)
was used to determine the number of stained microglia



Table 1 Cohort demographics and numbers

case
age at
death

Final
MMSE

sex
ApoE
alleles

PMI
(h)

Braak
stage

CERAD plaque
stage

diffuse
plaques

neuritic
plaques

NFTs
diffuse Lewy
bodies

NC = non-demented control: mean age =86; mean MMSE = 30; Median Braak stage = 2; Median CERAD = 0

1 81 30 M 3 / 3 2.17 2 0 0 0 0 0

2 91 30 M n/a n/a 2 0 0 0 1.4 0

3 86 30 M 3 / 3 2.17 3 0 0 0 4.6 0

4 93 30 F 3 / 3 2.25 2 0 0 0 0.25 0

5 84 30 M 2 / 3 3.25 0 0 n/a n/a n/a 0

6 85 30 M 3 / 3 2 3 1 2 0.5 8 0

7 84 30 F 3 / 3 2.42 0 0 0 0 0 0

8 92 30 F 2 / 3 3.25 3 2 5 0 0.75 0

9 81 30 M 3 / 4 2 2 2 2 10.5 1 0

HS = hippocampal sclerosis of aging: mean age =87; mean MMSE = 22.7; Median Braak stage = 2; Median CERAD = 0

10 74 20 M 3 / 4 8 3 2 0 0 1.4 0

11 95 16 F 3 / 4 3.25 3 0 0 0 1 0

12 87 28 F 3 / 3 1.82 3 0 0 0 4 0

13 84 10 F n/a 2.57 2 0 0 0 0 0

14 91 29 F 2 / 3 2.87 2 1 0 0 6.8 0

15 91 30 M 3 / 3 2.83 2 0 n/a n/a n/a 0

16 88 26 M 3 / 4 2.33 0 0 0 0 0 0

AD = Alzheimer’s disease: mean age =77; mean MMSE = 11; Median Braak stage = 6; Median CERAD = 3

17 75 18 F 3 / 4 2.5 6 3 9 0.33 25 0

18 84 13 M 4 / 4 5.17 6 3 4 1.33 26.75 0

19 65 3 F 3 / 4 4.1 6 3 2.67 1.67 41 0

20 85 4 F 3 / 3 11.2 6 3 6.67 1.33 78.8 0

21 79 6 M n/a 2.08 6 3 4.33 2.33 25.6 0

22 67 11 M 2 / 3 1.75 6 3 0.33 0 2.4 +

23 82 25 M n/a 2.75 6 2 1.67 2.67 19.8 +

AD + HS: mean age =91; mean MMSE = 7.8; Median Braak stage = 6; Median CERAD = 3

24 96 6 F 3 / 3 6.75 6 3 n/a n/a n/a 0

25 91 13 F 3 / 3 3 5 3 6.67 1.33 34 0

26 91 12 F 4 / 4 2.33 6 3 0 0 10.25 +

27 87 0 F 3 / 3 2.67 6 3 0 0 54.6 0

DLB = Dementia with Lewy bodies: mean age =80; mean MMSE = 17.25; Median Braak stage = 2; Median CERAD = 1

28 65 9 M 4 / 4 9.5 2 3 2 7.67 2 +

29 61 18 M 3 / 3 2 2 0 0 0 9.6 +

30 85 2 F 2 / 3 2 2 3 4 6.67 3.6 +

31 85 27 M 3 / 3 11.2 2 1 0 0 0.8 +

32 89 27 M 3 / 3 2.42 2 0 0 0 8.5 +

33 92 27 F 3 / 4 2.42 2 1 0.67 0 2 +

34 68 11 M 3 / 4 3.75 2 2 0 0 0.4 +

35 81 15 M 3 / 3 2.42 2 2 1.5 2.5 0.25 +

36 78 9 M 3 / 3 2.5 1 0 0 0 2 +

37 81 26 M 3 / 3 5.77 1 1 0 0 0 +

38 97 21 M 2 / 3 3.5 1 0 0 0 1.8 +
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Table 1 Cohort demographics and numbers (Continued)

39 78 15 M 3 / 4 n/a 1 1 3.5 0.5 0 +

Counts in the hippocampus of neurofibrillary tangles (NFTs), and amyloid plaques, without neurites (diffuse plaques), and with degenerating neurites (neuritic
plaques) (see [42]). Abbreviations: Apo E apolipoprotein E; PMI = post-mortem interval; MMSE =mini-mental state examination; +, feature present; n/a = not
available
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as previously described [16, 17]. The number of IBA1+

microglia was counted by morphological appearance in
5 arbitrarily placed 250 × 250 μm boxes in the CA1 re-
gion. A researcher (coauthor ADB) blind to all samples’
case histories conducted all data analysis. Immunofluor-
escence was imaged using a Nikon Eclipse 90i upright
microscope equipped with a Nikon DS-Ri1 digital
camera.
Table 2 Summary of microglia neuropathological assessment

CD68 positive pixels (Fig. 2)

WM sub CA1

NC (N = 9) 7.5 ± 4 2.5 ± 1.6 2.6 ± 2.2

HS-aging (N = 7) 8.7 ± 2.4 6 ± 3.5 5.4 ± 2.1

AD (N = 7) 10.6 ± 3.2 6.2 ± 2 5.3 ± 1.5

AD + HS (N = 4) 8.7 ± 3.6 5.5 ± 2.6 5.8 ± 2.1

DLB (N = 12) 7.6 ± 2.8 2.7 ± 1 2.3 ± 0.8

CD68 nuclear algorithm (Fig. 4)

NC (N = 9) 54.7 ± 52.1 13.9 ± 17.9 16 ± 18.5

HS-aging (N = 7) 54.8 ± 45.1 34.4 ± 33.6 30.2 ± 20.9

AD (N = 7) 100.2 ± 68.4 45.8 ± 35.8 29.2 ± 16.8

AD + HS (N = 4) 32.4 ± 15.8 27.2 ± 22.4 28.7 ± 26.6

DLB (N = 12) 53.3 ± 35 11.8 ± 9 11.6 ± 7.7

IBA1 nuclear algorithm (Fig. 5)

NC (N = 9) 101.9 ± 30.2 66.5 ± 14.3 60.8 ± 22.9

HS-aging (N = 7) 143.7 ± 80.8 84.7 ± 39.4 122.1 ± 63.5

AD (N = 7) 87.8 ± 55.4 84.1 ± 44.2 64.2 ± 16.2

AD + HS (N = 4) 97.9 ± 25.8 116.4 ± 74.9 108.2 ± 42.1

DLB (N = 12) 103.2 ± 55.6 69.3 ± 35.6 70 ± 32

IBA1 positive pixels (Fig. 6)

NC (N = 9) 2.8 ± 0.8 2.6 ± 0.9 2.4 ± 0.7

HS-aging (N = 7) 4 ± 1.8 2.5 ± 0.9 3.2 ± 1.1

AD (N = 7) 2.7 ± 1.2 2.5 ± 1.1 2.2 ± 0.6

AD + HS (N = 4) 3.6 ± 0.8 3.4 ± 2.1 3.6 ± 1.1

DLB (N = 12) 2.8 ± 0.8 1.9 ± 0.6 1.9 ± 0.5

Morphological assessment of IBA1+ microglia in CA1 region (Fig. 7)

ramified hypertrophic dystrophic

NC (N = 9) 16.9 ± 9.8 3.7 ± 7.1 4.4 ± 3.9

HS-aging (N = 7) 2.6 ± 2.6 13.8 ± 11.9 32.2 ± 22

AD (N = 7) 19.7 ± 10.4 4.5 ± 6.1 11.2 ± 9.7

AD + HS (N = 4) 9.8 ± 8.3 20.2 ± 13.7 19.8 ± 11.2

DLB (N = 12) 9.3 ± 6.5 2.5 ± 3.6 13.9 ± 9.3

Values represent mean ± SD for the quantification of CD68 and IBA1 immunohistoc
Statistics
JMP Software version 10.0 was used for statistical analysis.
Normality was assessed using the Shapiro-Wilk test. As
there were only a few violations of normality, and ANOVA
is robust to such violations [18], a one-way ANOVA
followed by a Tukey post hoc analysis was used to compare
differences between the five groups. Mean ± SD for quanti-
fications are shown in Table 2. Differences between means
CA2/3 CA4 DG hipp ave

3.2 ± 2.1 2.8 ± 2.2 2.4 ± 1.6 3.5 ± 2.1

4.1 ± 2.1 3.4 ± 1.2 2.4 ± 1.2 5 ± 1.4

4.2 ± 2.6 3.5 ± 1.2 4.8 ± 2 5.8 ± 1

3.2 ± 1.2 2.4 ± 1.3 2.5 ± 1.4 4.7 ± 1.2

3.4 ± 2.3 2.7 ± 1.1 2.2 ± 0.3 3.5 ± 0.9

17 ± 18.3 20 ± 24 10.7 ± 11.3 22.1 ± 22.1

20.4 ± 19.8 19.2 ± 11.9 8.1 ± 7.8 27.8 ± 21.2

16.4 ± 7.5 17.3 ± 13.3 26.3 ± 18.1 39.2 ± 22.4

15.4 ± 14.4 8 ± 6.8 3.8 ± 5.2 19.2 ± 13.7

15.6 ± 11.1 13.3 ± 8.1 8.9 ± 5.9 19.1 ± 10.1

74 ± 11.7 82.7 ± 16.8 80.5 ± 18.7 77.7 ± 11.7

142.8 ± 37.3 110.9 ± 50.3 92.3 ± 39.1 116.1 ± 45.4

75.5 ± 19.2 43.2 ± 27.2 50.5 ± 37.2 67.5 ± 26.7

132.4 ± 64.6 94.3 ± 47.1 98.9 ± 47.1 108 ± 41.9

74.2 ± 46.7 83.8 ± 48 74.5 ± 43.9 79.2 ± 40.7

3.1 ± 0.8 3.3 ± 1 3.1 ± 0.8 2.9 ± 0.7

3.9 ± 0.8 3.5 ± 1.3 3.1 ± 1.1 3.3 ± 1

3.1 ± 1 2 ± 1.1 2.1 ± 0.8 2.4 ± 0.7

3.9 ± 1.2 3.1 ± 0.7 3.3 ± 1 3.5 ± 1

2.3 ± 0.8 2.6 ± 0.9 2.5 ± 0.9 2.3 ± 0.7

rod-shaped amoeboid total

2.1 ± 4.1 3.7 ± 5 30.8 ± 10.3

2.4 ± 5.1 8.8 ± 8.8 59.9 ± 29.8

2.6 ± 2.7 4.5 ± 3.6 42.4 ± 11.5

2.6 ± 3.2 14.6 ± 12.4 67 ± 15.8

3.9 ± 4 1.9 ± 2.6 31.3 ± 8.2

hemistry. Data is plotted in the indicated figures
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were considered significant at p < 0.05. Heatmaps were gen-
erated using JMP Software version 10.0. All other graphs
were generated using GraphPad Prism software version 6.0,
with values expressed as mean ± SEM.
Results
Five groups of cases (Table 1) were pathologically-confirmed
as either AD (n= 7), HS-Aging (n= 7), AD+HS-aging (n=
4), DLB (n = 12), and NC (n = 9). HS-aging and DLB cases
were included in this study to determine if there is disease
specificity in microglia pathology and to provide the first
quantitative analysis of microglia in HS-Aging. Pure
HS-aging cases lacked substantial additional patholo-
gies AD-type pathology, or Lewy bodies [19–21], as
shown in Table 1. The neuropathological changes asso-
ciated with neocortical/diffuse Lewy body disease in-
clude, by definition, α-synuclein immunoreactive neuronal
inclusions (Lewy bodies) and processes in multiple portions
Fig. 1 Regions of interest used for microglia analysis. A representative hipp
in this study. The outlines illustrate the boundaries used in identifying the
ammonis (CA) areas, CA1, CA2/3, CA4, and the dentate gyrus (DG). The ROIs sho
ROIs (WM and sub) could not be included in the image frame, as the brain regi
of the cerebral neocortex. In pure DLB, there are low levels
of amyloid-β pathology or NFTs, as shown in Table 1.
Primary goals of this study were to assess regional

microglia heterogeneity and to exploit the ability of digital
neuropathological quantification to detect in differences
microglial morphometry when cases are stratified accord-
ing to their neurodegenerative diseases. Six regions of
interest (ROI) were identified by dividing the hippocampal
formation into the dentate gyrus (DG), the cornu ammo-
nis (CA) areas (CA1, CA2/3, and CA4), the subiculum
(sub), and the adjacent white matter (WM) (Fig. 1). Repre-
sentative examples of the ROIs are shown in Fig. 1.

Pattern of CD68 staining in the hippocampus of autopsy
cases
Quantification of the CD68 positive pixels is shown in
Fig. 2. By a one-way ANOVA a significant effect of dis-
ease status was found sub (Fig. 2c; F4,38 = 6.3001; p =
0.0007), CA1 (Fig. 2d; F4,38 = 8.0944; p < 0.001), DG
ocampus is shown for the five neuropathological diagnoses included
following brain regions: white matter (WM), subiculum (sub), the cornu
wn in the figure are not the actual ROIs used for analysis, as some of the
on was larger than the image frame



Fig. 2 Digital neuropathological quantification using positive pixel algorithm of CD68+ immunostaining in the hippocampus of autopsy cases.
Representative example of (a) CD68 staining and a digitally generated mark-up showing the ability of the positive pixel algorithm to detect the
staining. Digital neuropathological quantification of the CD68 staining using the positive pixel algorithm is shown for the (b) WM, (c) sub, (d) CA1,
(e) CA2/3, (f) CA4, (g) DG, and for the (h) average of the hippocampal formation. Circles represent an individual case, with mean and SEM shown
for the group. Statistical comparisons: *p< 0.05 compared to AD cases. §p< 0.05 compared to HS-aging cases. ‡p< 0.05 compared to AD +HS-aging cases.
(i) Heatmap summarizes the results shown in (b-h) (also see Table 2)
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(Fig. 2g; F4,38 = 5.3332; p = 0.0019), and in the average
of the six regions in the hippocampus formation
(Fig. 2h; F4,38 = 4.3221; p = 0.0062). No significant effect
was found by a one-way ANOVA in WM (Fig. 2b),
CA2/3, (Fig. 2e), or CA4 (Fig. 2f ). HS-aging, AD, and
AD + HS-aging were found to have significantly more
CD68+ staining in the CA1 region compared to NC or
DLB cases (Fig. 2d). However, there was no significant
difference among the three disease conditions (HS-
aging, AD, and AD + HS-aging) in the CA1 region
(Fig. 2d). Interestingly, we found significantly more
CD68+ staining in the DG of AD cases compared to the
other four groups (Fig. 2g). When averaged across the
six-hippocampal formation sub regions, the AD cases
were found to have significantly more CD68+ staining
compared to NC or DLB groups. Overall, the greatest
CD68+ staining was seen in the WM, as is evident by
the heatmap summary of the CD68 positive pixel
analysis (Fig. 2i). A survey of the CD68+ staining in the
six-hippocampal formation regions illustrates the
regional and disease-specific heterogeneity in the stain-
ing (Fig. 3). Of note is a large round cell type that can
be found in areas of high density staining as shown in
Fig. 3b-c. Interestingly, just distal to the very intense
accumulation of CD68+ cells, the CD68+ staining was
unremarkable, with a few ramified microglia (Fig. 3d).
Quantification of the number of large round CD68+

cells was done using the nuclear algorithm, by adjusting
the algorithm to detect only the large round cells as
shown in Fig. 4. In comparison to design based stereo-
logical methods, limitations of the nuclear algorithm
include an inability to provide an estimate of the total
number of microglia, because of a lack of 3-
dimensional volume measurements [22, 23]. Limita-
tions notwithstanding, results of the nuclear algorithm
were similar to the positive pixel algorithm, with the
HS-aging and AD groups having the greatest number
of CD68+ cells (Table 2). As shown by the heatmap, the
greatest number of CD68+ cells was found in the WM
of AD cases (Fig. 4).



Fig. 3 Survey of CD68+ staining in the hippocampus of autopsy cases. (a) Representative examples of CD68+ staining pattern in the brain regions
analyzed by digital neuropathological analysis. (b) Low power photomicrograph of hippocampus of a DLB individual (case #36) highlights an area
of intense staining (blue arrow) shown in (c), and an area of low CD68 staining (black arrow) in a nearby region (d)
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Digital quantification of IBA1 staining in the
hippocampus of autopsy cases
Quantification of the number of IBA1+ cells by the nuclear
algorithm is shown in Fig. 5. A representative example of
the ability of the algorithm to detect individual cells is
shown in Fig. 5a. By a one-way ANOVA, a significant effect
of disease status was found in the CA1 region (Fig. 5d;
F4,38 = 3.9914; p = 0.0092), CA2/3 region (Fig. 5e; F4,38 =
5.8525; p = 0.0011), and in the CA4 (Figure 5f F4,38 =
2.6929; p = 0.0473). No significant effect was found by a
one-way ANOVA in WM (Figure 5b), sub (Fig. 5c), DG
(Fig. 5g), or in the average of the six regions in the



Fig. 4 Digital neuropathological quantification using nuclear algorithm of number of large round CD68+ cells in the hippocampus of autopsy
cases. Representative example of (a) CD68 staining and a digitally generated mark-up showing the ability of the nuclear algorithm to detect the
staining of the large round cells, but not smaller cells or processes. Digital neuropathological quantification of the CD68 staining using the nuclear
algorithm to detect the staining is shown for the (b) WM, (c) sub (F4,38 = 2.9934; p= 0.0321), (d) CA1, (e) CA2/3, (f) CA4, (g) DG (F4,38 = 4.3393; p= 0.0061),
and for the (h) average of the hippocampal formation. Circles represent an individual case, with mean and SEM shown for the group. Statistical
comparisons: *p < 0.05 compared to AD cases. (i) Heatmap summarizes the results shown in (b-h) (also see Table 2)
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hippocampus formation (Fig. 5h). In the CA1 region, the
HS-aging had an increased number of IBA1+ cells com-
pared to NC, AD or DLB. As shown by the heatmap sum-
mary, a similar pattern of increased number of IBA1+

microglia was found in the HS-aging and AD+HS-aging
groups compared to the NC, AD, or DLB groups
(Fig. 5i). Quantification of the IBA1 positive pixels (Table 2)
also showed a similar pattern of increased IBA1+ staining
in the HS-aging and AD+HS-aging groups compared to
the NC, AD, or DLB groups (Fig. 6).

IBA1+ microglia morphology in the hippocampus of
autopsy cases
An examination (Fig. 7a) of the IBA1+ microglia in the six
ROIs in the five neuropathologic groups showed remark-
able heterogeneity in microglia density, as captured by the
digital neuropathological quantification. There was also het-
erogeneity in IBA1+ microglia morphology, which was un-
derappreciated in the digital neuropathological analysis, as
microglia density and cell number were measured irrespect-
ive of the microglia morphology. For example, a striking
pattern of IBA1+ microglia morphology is the rod-shaped
microglia, which were readily apparent in a subset of cases.
As shown in Fig. 7b-c, rod-shaped microglia are character-
ized by a narrow cell body with a few planar processes. The
rod-shaped microglia could be found as individual cells
(Fig. 7b), or as long and thin groups of cells that may have
fused (Fig. 7b and c and Fig. 8). The appearance of micro-
glia with polarized and parallel processes suggested that the
microglia could be following neurites—possibly, degenerat-
ing axons or neurons themselves. To test the possibility that
microglia could be surrounding degenerating neuronal pro-
cesses, double label immunofluorescence was performed
for microglia (IBA1) and NFTs (PHF1). Fig. 8a shows abun-
dant PHF1+ staining and IBA1+ rod-shaped microglia in
the CA1 region of an AD individual (case #23). We found
no evidence of systematic overlap of PHF1+ neurites and
IBA1+ rod-shaped microglia, as shown in Fig. 8b. Rather,



Fig. 5 Digital neuropathological quantification using nuclear algorithm of number of IBA1+ cells in the hippocampus of autopsy cases.
Representative example of (a) IBA1 staining and a digitally generated mark-up showing the ability of the nuclear algorithm to detect six stained
cells. Digital neuropathological quantification of the IBA1 staining using the nuclear algorithm is shown for the (b) WM, (c) sub, (d) CA1, (e) CA2/
3, (f) CA4, (g) DG, and for the (h) average of the hippocampal formation.. Circles represent an individual case, with mean and SEM shown for the
group. Statistical comparisons: §p < 0.05 compared to HS-aging cases. (i) Heatmap summarizes the results shown in (b-g) (also see Table 2)
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long trains of rod-shaped microglia could sometimes be
seen to run parallel to and between PHF1+ neurons but did
not co-localize with the PHF1+ staining (Fig. 8c). In this ex-
ample, the tip of the rod-shaped microglia was near (but
not within) a PHF1+ structure, and the IBA-1 immunoreac-
tive structure appeared to be a fusion / cluster of multiple
cells with 5 clearly visible DAPI+ nuclei (Fig. 8d).
Another pattern of microglia morphology observed

was the dystrophic / degenerating microglia, which over-
lapped morphologically with cells that have been de-
scribed to have processes that are spheroidal, beaded,
de-ramified, or fragmented [24, 25]. Examples of dys-
trophic / degenerating microglia are shown in Fig. 9. In
AD (Fig. 9a) and DLB (Fig. 9b), for example, the dys-
trophic / degenerating microglia had very thin processes
that are beaded and fragmented. In HS-aging (Fig. 9c)
and AD +HS-aging (Fig. 9d), dystrophic microglia
morphology was more striking, and the processes of the
microglia were beaded and tortuous.
The remarkable diversity in the microglia morphology

led us to carefully review and categorize the morphological
appearances of the microglia into five distinct classes
(Fig. 10a), to allow measurement of changes in the micro-
glia classes associated with the five neurodegenerative dis-
ease groups. The five classes of microglia morphologies
included: 1) ramified microglia, which have a ‘surveying’
non-reactive microglia morphological appearance, with thin
highly branched processes [5, 26]; 2) hypertrophic microglia
(often called activated microglia), which have become en-
larged, hyper-ramified or may have short thick processes [5,
26]; 3) dystrophic microglia, with processes that are spher-
oidal, beaded, de-ramified, or fragmented [24–26]; 4) rod-
shaped microglia, characterized by a narrow cell body with
a few planar processes [27, 26]; and 5) amoeboid microglia,
with an enlarged cell body with few to no processes [5, 26].
CD68 staining could clearly identify cells with an amoeboid
morphology, and to a lesser extent cells with a ramified
morphology. In contrast, IBA1 staining was useful to iden-
tify all five microglia morphologies. Therefore, IBA1 stain-
ing was used to quantify the distribution in the microglia
morphology according to these five subtypes of microglial
shapes. Focusing on the CA1 region of the hippocampus,
the number of each of the five morphological classes of
IBA1+ microglia was counted in five randomly placed



Fig. 6 Digital neuropathological quantification using positive pixel algorithm of IBA1+ immunostaining in the hippocampus of autopsy cases.
Representative example of (a) IBA1 staining and a digitally generated mark-up showing the ability of the positive pixel algorithm to detect the
staining. Digital neuropathological quantification of the IBA1 staining using the positive pixel algorithm is shown for the (b) WM, (c) sub, (d) CA1
(F4,38 = 5.0943; p = 0.0025), (e) CA2/3 (F4,38 = 4.8888; p = 0.0032), (f) CA4, (g) DG,, and for the (h) average of the hippocampal formation (F4,38 = 3.0201;
p = 0.0311). Circles represent an individual case, with mean and SEM shown for the group. Statistical comparisons: *p < 0.05 compared to
AD cases. §p < 0.05 compared to HS-aging cases. ‡p < 0.05 compared to AD + HS-aging cases. (i) Heatmap summarizes the results in (b-h)
(also see Table 2)

Bachstetter et al. Acta Neuropathologica Communications  (2015) 3:32 Page 10 of 16
and evenly distributed 250x250μm regions of interest
(ROI). HS-aging cases had fewer ramified microglia
than NC (p = 0.0091) or AD (p = 0.0027) cases (Fig. 10b,
Table 2). HS-aging and AD+HS-aging had the most hyper-
trophic microglia. AD+HS-aging cases had more hyper-
trophic microglia than NC (p = 0.0132), AD (p = 0.0270), or
DLB (p = 0.0044) cases, and HS-aging cases had more
hypertrophic microglia than DLB (p = 0.0140) cases
(Fig. 10c, Table 2). HS-aging cases had more dystrophic
microglia than NC (p = 0.0005), AD (p = 0.0193), or
DLB (p = 0.0225) cases (Fig. 10d, Table 2). Quantification of
rod-shaped microglia identified a subset of cases with
abundant rod-shaped microglia; however, the cases
were not specific to a disease group (Fig. 10e, Table 2).
AD + HS-aging cases had more amoeboid microglia
than NC (p = 0.0428), or DLB (p = 0.0085) cases
(Fig. 10f, Table 2). The total number of microglia in the
CA1 region, regardless of morphology, was greatest in
HS-aging and AD +HS-aging. AD + HS-aging cases
had more total microglia than NC (p = 0.046), or DLB
(p = 0.0035) cases. HS-aging cases had more total
microglia than NC (p = 0.0072) or DLB (p = 0.0048)
cases (Fig. 10g, Table 2). As the total number of micro-
glia was found to be altered in the different groups,
each of the five microglia classifications was plotted as
a percentage of the total number of microglia (Fig. 10h)
to help visualize the microglia morphology distribu-
tions within and among the different diseases.

Discussion
The present study underscores the rich diversity of micro-
glial morphologies in the hippocampus of the human brain
that may change according to the diseases of aging. We ob-
served regional heterogeneity in the hippocampal formation
in the density and number of IBA1+ and CD68+ microglia.
We also observed five morphologically-defined classes of
IBA1 labeled microglia: ramified, hypertrophic, dystrophic,
rod-shaped, and amoeboid (Fig. 10). Our observations pro-
vide evidence for subclasses of microglial morphologies that
are seen in particular neurodegenerative diseases. The data



Fig. 7 Survey of IBA1+ staining in the hippocampus of autopsy cases. (a) Representative examples of IBA1+ staining pattern in the brain regions
analyzed by digital neuropathological analysis(b) A low powered photomicrograph shows the widespread distribution of rod shaped microglia in
the CA1 region of a DLB individual (case #34). Long trains of microglia (highlighted by blue arrows) are shown at higher magnification in (c).
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provide at least some support for disease-specific microglia
pathology in age-related dementias.
A primary goal of our project was to determine if

digital neuropathological quantification could detect
disease-specific changes in IBA1 and CD68 labeled
microglia activation. This is the first study to use digital
neuropathological quantification to measure changes in
human microglia activation and compare directly the
microglia response in the different neurodegenerative
diseases, and the first to assess microglia in HS-aging
cases. The digital neuropathological quantification was
able to detect regional differences in IBA1 and CD68



Fig. 8 Lack of localization of IBA+ rod-shaped microglia to PHF1+ neurons in an AD individual (case #23). (a) A low powered photomicrograph
shows the distribution of rod-shaped microglia next to PHF1+ cells. (b) A linear group of rod-shaped microglia is shown at a higher magnification.
(c) A second example of rod-microglia, where the microglia run parallel and between PHF1+ neurons. (d) Of note, the polar end of the rod-microglia (white
arrow) was found to have 5 DAPI+ nuclei
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staining associated with the neuropathological diagno-
sis. Specifically, we found increased IBA1 and CD68
staining in the HS-aging and AD +HS-aging cases.
Interestingly, the spatial pattern and magnitude of the
changes in IBA1 and CD68 staining were remarkably
similar between the HS-aging and AD + HS-aging
cases, suggesting that the HS-aging pattern of microglia
staining is dominant over the AD pattern, and that
there is not a robust additive effect of the two patholo-
gies. Thus, results of the digital neuropathological
quantification clearly show a pattern of microglia acti-
vation associated with a specific neurodegenerative



Fig. 9 Dystrophic IBA1+ microglia in the hippocampus. Examples of IBA1+ dystrophic microglia in the CA1 region of AD individual (a; case #20),
DLB individual (b; case #33), HS-aging individual (c; case #15), and AD + HS-aging individual (d; case #27). Scale bar is 25 μm
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disease, but overall the quantification provided only
modest sensitivity, with limited diagnostic potential, to
separate AD from HS-aging. To determine the repro-
ducibility of the digital quantification, 12 of 39 cases se-
lected at random were replicated in an independent
experiment. Even with the modest sample size, a com-
parison of the number of IBA1 positive pixels in the
CA1 regions between the two independent experiments
resulted in a R2 = 0.7. The results of the replication
study support the use of digital neuropathological quan-
tification as a relatively accurate, unbiased, quantitative and
efficient means of neuropathological assessment. In the fu-
ture, development of algorithms that can detect the differ-
ent microglia phenotypes (Fig. 10) should greatly improve
the potential of this approach to detect disease-related
changes in microglia morphology, until specific molecular
markers that recognize the different microglia morpho-
logical states are available.
The long-standing view that microglia become activated

and promote neuroinflammation in neurodegenerative dis-
ease (toxic gain of function) has been challenged recently
by the concept of the dystrophic / diseased microglia (loss
of function; see [25, 28]). Support for the hypofunctional
(as opposed to activated) microglia model is largely based
on morphological examination of IBA1-stained microglia in
autopsy samples from aged humans [29–32], as currently
there are no specific markers that recognize only degenerat-
ing/dystrophic microglia. In addition, the dystrophic micro-
glia phenotype seen in humans is largely absent in rodent
models [25]. This may reflect intrinsic differences in human
microglia [33], or may reflect limitations in the current ani-
mal models. We found that aged individuals without de-
mentia were more likely to have ramified microglia than
individuals with dementia (AD, HS-aging, AD+HS-aging,
or DLB). Moreover, the present study confirmed that dys-
trophic microglia are found in aged individuals and in in-
creased numbers in aged individuals with three distinct
forms of dementia (AD, HS-aging, and DLB). Our results
provide an independent confirmation of the presence of
dystrophic microglia described by the Streit laboratory
[29–32]. Research at our center has previously shown
differences in the M1/M2 microglia phenotype between
mild AD and end-stage AD [34], supporting changes in
the temporal dynamic of the microglia response to



Fig. 10 Disease specific patterns in IBA1+ microglia morphology. (a) Representation of microglia morphologies seen in the hippocampus of aged
individuals. The number of microglia was quantified at 40x magnification in five 250 x 250 μm regions of interest (ROIs) that were randomly placed and
evenly spaced in the CA1 region. Following the classification shown in (a), IBA+ microglia were classified as either (b) ramified (F4,38 = 5.3533; p= 0.0019),
(c) hypertrophic (F4,38 = 5.5082; p = 0.0016), (d) dystrophic (F4,38 = 5.7249; p= 0.0012), (e) rod-shaped, or (f) amoeboid (F4,38 = 3.9836; p= 0.0093). (g) The
number of microglia (F4,38 = 7.2694; p = 0.0002) in the five classifications was summed to get the total number of microglia. The gray circles in
(b-g) represent the average number of microglia per mm2 for an individual case, with mean and SEM shown for each group (see also Table 2).
Statistical comparisons: §p < 0.05 compared to HS-aging cases. ‡p < 0.05 compared to AD + HS-aging cases. (h) As the total number of
microglia significantly varied by group, the number of microglia in each of the five classifications was plotted as a percent of the total number of microglia
to illustrate the disease-related patterns in microglia morphology (also see Table 2)
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varying degrees of neuropathology. Still, the temporal
dynamic of microglia in humans over the course of the
lifespan has not been defined and is not fully testable
through autopsy (cross-sectional) studies. This is a vital
area for future investigation.
The current study highlights the importance of

morphology-based readout of cell activity. Rod-shaped
microglia are a particularly fascinating microglia phenotype,
which was first described by Nissl more than 100 years ago
(reviewed in: [27]). Rod-shaped microglia have been de-
scribed clinically in neurosyphilis, subacute sclerosing
panencephalitis, lead encephalopathy, viral encephalitis
including HIV-1, and Rasmussen's encephalitis [27, 35];
however, there are few modern reports of rod-shaped
microglia in the clinical literature. In experimental
models, rod-shaped microglia have been best described
following traumatic brain injury [36–38, 16], where a
diffuse brain injury will cause the rapid (by 6 h)
polarization of microglia to follow along neuronal pro-
cesses. It has been shown previously in rats that micro-
glia will fuse specifically to the apical dendrite of
neurons infected with a retrovirus, but not to un-
infected neurons [39]. It is not clear if fusion is occur-
ring in the case of rod-shaped microglia in the current
study. Beyond these few reported observations, little is
known mechanistically about the chemoattractant sig-
nals that drive formation of rod-shaped microglia, or
about the specific functions of the rod-shaped micro-
glia in relation to the neuron. We found that rod-
shaped microglia could be proximal and parallel to
PHF1+ neurons/axons, but the rod-shaped microglia
did not appear to fuse with or engulf the PHF1+ struc-
tures. Rod-shaped microglia were present in approxi-
mately 60% of cases included in this study, but were
most abundant in a subset of cases. Review of the case
histories of individuals with abundant rod-shaped
microglia did not identify any obvious commonalities.
A goal for future studies will be to identify a larger
sample of cases with abundant rod-shaped microglia to
distinguish clinical-pathological correlations, as a first
step in defining mechanistically the functions of this
mysterious cell type.
A limitation of this study is the subjective criteria that

were used to classify microglia into one of the five morpho-
logical categories (Fig. 10). This approach requires an ex-
perimenter capable of discerning differences in microglia
morphology. The approach also imparts bias and potential
for experimenter error. The current study demonstrates
that there is a great diversity in the microglia morphology
in humans, which is underappreciated, as this diversity is
largely absent from animal models. There have been prior
attempts to operationalize morphological changes in micro-
glia. A recent study reconstructed microglia from mice and
humans using computer-based tracing systems, and was
able to provide average cell body size and roundness, along
with the number of processes, process length and volume
occupied by the processes [40]. That study did not include
any samples without neurologic disease, and therefore
underestimated the heterogeneity in microglia morphology;
for example, they did not describe rod-shaped microglia.
Using a similar approach, others have attempted to define
classes of microglia morphology, such as the rod-shaped
microglia, by calculating cell length to cell width and the
number of polar vs. planar branches [36]. Moreover, others
have proposed digital 3D reconstruction of the microglia as
a means to quantify the microglia morphology [41]. How-
ever, before microglia morphological assessment can be-
come standard practice in characterizing the microglia
pathology, a consensus must be established on what defines
different microglia morphologies, as there is currently no
consensus-based agreement on definitions, or terminology
for the specific classes of microglia morphology. Our study
provides a first step towards this goal and will hopefully
provide a framework to move the field forward in this
direction.
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