2,664 research outputs found

    MEMOFinder: combining _de_ _novo_ motif prediction methods with a database of known motifs

    Get PDF
    *Background:* Methods for finding overrepresented sequence motifs are useful in several key areas of computational biology. They aim at detecting very weak signals responsible for biological processes requiring robust sequence identification like transcription-factor binding to DNA or docking sites in proteins. Currently, general performance of the model-based motif-finding methods is unsatisfactory; however, different methods are successful in different cases. This leads to the practical problem of combining results of different motif-finding tools, taking into account current knowledge collected in motif databases.
*Results:* We propose a new complete service allowing researchers to submit their sequences for analysis by four different motif-finding methods for clustering and comparison with a reference motif database. It is tailored for regulatory motif detection, however it allows for substantial amount of configuration regarding sequence background, motif database and parameters for motif-finding methods.
*Availability:* The method is available online as a webserver at: http://bioputer.mimuw.edu.pl/software/mmf/. In addition, the source code is released on a GNU General Public License

    Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise

    Get PDF
    The mechanism of chemotherapy-induced acceleration of ovarian aging is not fully understood. We used doxorubicin, a widely used cancer chemotherapeutic, in a variety of in vivo xenograft, and in vitro models to investigate the impact of chemotherapy-induced aging on the human ovary. Doxorubicin caused massive double-strand-DNA-breaks in primordial follicles, oocytes, and granulosa cells in a dose dependent fashion as revealed by accumulating γH2AX foci. This damage was associated with apoptotic oocyte death and resulted in the activation of ATM. It appeared that the repair response enabled a minor proportion of oocytes (34.7%) and granulosa cells (12.1%) to survive while the majority succumbed to apoptotic death. Paradoxically, inhibition of ATM by KU-55933 resulted in improved survival, probably via prevention of downstream activation of TAp63α. Furthermore, doxorubicin caused vascular and stromal damage in the human ovary, which might impair ovarian function both pre- and post-menopausally. Chemotherapy-induced premature ovarian aging appears to result from a complex process involving both the germ- and non-germ cell components of the ovary. These effects may have clinical implications in aging both for premenopausal and postmenopausal cancer survivors

    Cytometry of apoptosis. Historical perspective and new advances

    No full text
    Characteristic changes in cell morphology paralleled by the appearance of a multitude of molecular and biochemical markers occur during apoptosis. These changes vary depending on the cell type, mechanism of induction of apoptosis, and the time-window at which the process of apoptosis is analyzed. By virtue of the capability of rapid measurement of individual cells the flow- and imaging-cytometry become preferred technologies to detect, identify and record incidence of apoptosis in large cell populations. It also provided a valuable tool to investigate molecular mechanisms in field of necrobiology. This review outlines the progress in development of the most commonly used cytometric methods probing cells death based on analysis of fragmentation of DNA, activation of caspases, analysis of mitochondrial potential, alterations in plasma membrane structure and other features that characterize programmed cell death. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later

    Subnuclear foci quantification using high-throughput 3D image cytometry

    Get PDF
    Ionising radiation causes various types of DNA damages including double strand breaks (DSBs). DSBs are often recognized by DNA repair protein ATM which forms gamma-H2AX foci at the site of the DSBs that can be visualized using immunohistochemistry. However most of such experiments are of low throughput in terms of imaging and image analysis techniques. Most of the studies still use manual counting or classification. Hence they are limited to counting a low number of foci per cell (5 foci per nucleus) as the quantification process is extremely labour intensive. Therefore we have developed a high throughput instrumentation and computational pipeline specialized for gamma-H2AX foci quantification. A population of cells with highly clustered foci inside nuclei were imaged, in 3D with submicron resolution, using an in-house developed high throughput image cytometer. Imaging speeds as high as 800 cells/second in 3D were achieved by using HiLo wide-field depth resolved imaging and a remote z-scanning technique. Then the number of foci per cell nucleus were quantified using a 3D extended maxima transform based algorithm. Our results suggests that while most of the other 2D imaging and manual quantification studies can count only up to about 5 foci per nucleus our method is capable of counting more than 100. Moreover we show that 3D analysis is significantly superior compared to the 2D techniques

    Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise

    Get PDF
    The mechanism of chemotherapy-induced acceleration of ovarian aging is not fully understood. We used doxorubicin, a widely used cancer chemotherapeutic, in a variety of in vivo xenograft, and in vitro models to investigate the impact of chemotherapy-induced aging on the human ovary. Doxorubicin caused massive double-strand-DNA-breaks in primordial follicles, oocytes, and granulosa cells in a dose dependent fashion as revealed by accumulating γH2AX foci. This damage was associated with apoptotic oocyte death and resulted in the activation of ATM. It appeared that the repair response enabled a minor proportion of oocytes (34.7%) and granulosa cells (12.1%) to survive while the majority succumbed to apoptotic death. Paradoxically, inhibition of ATM by KU-55933 resulted in improved survival, probably via prevention of downstream activation of TAp63α. Furthermore, doxorubicin caused vascular and stromal damage in the human ovary, which might impair ovarian function both pre- and post-menopausally. Chemotherapy-induced premature ovarian aging appears to result from a complex process involving both the germ- and non-germ cell components of the ovary. These effects may have clinical implications in aging both for premenopausal and postmenopausal cancer survivors
    corecore