21 research outputs found

    Biological nitrification inhibition in sorghum: the role of sorgoleone production

    No full text
    Nitrification and denitrification are the two most important processes that contribute to greenhouse gas emission and inefficient use of nitrogen. Suppressing soil nitrification through the release of nitrification inhibitors from roots is a plant function, and termed “Biological Nitrification Inhibition (BNI)”. We report here the role and contribution of sorgoleone release to sorghum-BNI function

    Activity of chemolithotrophic nitrifying bacteria under stress in natural soils

    No full text
    Nitrification is an important process in the biogeochemical cycle of nitrogen, linking its reduced and oxidized parts. Since the conversion of ammonium to nitrate has a great impact on the environment, such as weathering of soils, production of greenhouse gases, and eutrophication of surface and ground waters, it is important to know the characteristics of the responsible organisms. Although many organotrophic microorganisms are able to produce oxidized nitrogenous compounds such as nitrite and nitrate, chemolithotrophic nitrifying bacteria are considered to be the most important group producing these compounds from ammonia. A contribution to nitrate production by organotrophic microorganisms has only been observed in some acid coniferous forest soils

    Introduction

    No full text

    Hip Work

    No full text

    Hip-Hop Habitus v.2.0

    No full text

    Bibliography

    No full text

    “Rip It Up”

    No full text
    corecore