440 research outputs found

    A reflection origin for the soft and hard X-ray excess of Ark 120

    Full text link
    Over the last few years several models have been proposed to interpret the widespread soft excess observed in the X-ray spectra of type 1 active galactic nuclei (AGN). In particular, reflection from the photoionized accretion disc blurred by relativistic effects has proven to be successful in reproducing both the spectral shape and the variability pattern of many sources. As a further test to this scenario we present the analysis of a recent ~100 ks long Suzaku observation of Arakelian 120, a prototypical 'bare' Seyfert 1 galaxy in which no complex absorption system is expected to mimic a soft excess or mask the intrinsic properties of this key component. We show that a reflection model allowing for both warm/blurred and cold/distant reprocessing provides a self-consistent and convincing interpretation of the broadband X-ray emission of Ark 120, also characterized by a structured iron feature and a high-energy hump. Although warm absorbers, winds/outflows and multiple Comptonizing regions may play significant roles in sources with more spectral complexity, this case study adds evidence to the presence of blurred disc reflection as a basic component of the X-ray spectra of type 1 AGN.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Re-examining the XMM-Newton Spectrum of the Black Hole Candidate XTE J1652-453

    Full text link
    The XMM-Newton spectrum of the black hole candidate XTE J1652-453 shows a broad and strong Fe K-alpha emission line, generally believed to originate from reflection of the inner accretion disc. These data have been analysed by Hiemstra et al. (2011) using a variety of phenomenological models. We re-examine the spectrum with a self-consistent relativistic reflection model. A narrow absorption line near 7.2 keV may be present, which if real is likely the Fe XXVI absorption line arising from highly ionised, rapidly outflowing disc wind. The blue shift of this feature corresponds to a velocity of about 11100 km/s, which is much larger than the typical values seen in stellar-mass black holes. Given that we also find the source to have a low inclination (i < 32 degrees; close to face-on), we would therefore be seeing through the very base of outflow. This could be a possible explanation for the unusually high velocity. We use a reflection model combined with a relativistic convolution kernel which allows for both prograde and retrograde black hole spin, and treat the potential absorption feature with a physical model for a photo-ionised plasma. In this manner, assuming the disc is not truncated, we could only constrain the spin of the black hole in XTE J1652-453 to be less than ~ 0.5 Jc/GM^{2} at the 90% confidence limit.Comment: 8 pages, 8 figures, accepted for publication in MNRA

    An XMM-Newton view of the `bare' nucleus of Fairall 9

    Full text link
    We present the spectral results from a 130 ks observation, obtained from the X-ray Multi-Mirror Mission-Newton (XMM-Newton) observatory, of the type I Seyfert galaxy Fairall 9. An X-ray hardness-ratio analysis of the light-curves, reveals a `softer-when-brighter' behaviour which is typical for radio-quiet type I Seyfert galaxies. Moreover, we analyse the high spectral-resolution data of the reflection grating spectrometer and we did not find any significant evidence supporting the presence of warm-absorber in the low X-ray energy part of the source's spectrum. This means that the central nucleus of Fairall 9 is `clean' and thus its X-ray spectral properties probe directly the physical conditions of the central engine. The overall X-ray spectrum in the 0.5-10 keV energy-range, derived from the EPIC data, can be modelled by a relativistically blurred disc-reflection model. This spectral model yields for Fairall 9 an intermediate black-hole best-fit spin parameter of α=0.390.30+0.48\alpha=0.39^{+0.48}_{-0.30}.Comment: Accepted for publication in MNRAS. The paper contains 11 figures and 1 tabl

    Effects Of Circum-nuclear Disk Gas Evolution And The Spin Of Central Black Holes

    Full text link
    Mass and spin are the only two parameters needed to completely characterize black holes in General Relativity. However, the interaction between black holes and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of super-massive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such fiery environment influence the angular momentum of the gas accreted onto SMBHs, and, hence, black-hole spins is uncertain. We explore the interaction between SMBHs and their environment via first 3D sub-parsec resolution simulations (ranging from 0.1 pc to 1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial to investigate the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact on the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter, a, of about 0.6 - 0.9, corresponding to radiative efficiencies \epsilon = 9% - 15%. These results suggest that star formation feedback taking place in the circum-nuclear disk during the in-fall cannot induce alone very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.Comment: Changes in title and updates in references. Inclusion of additional runs and parameter studies. Conclusions unaffected. Accepte

    Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1

    Full text link
    The spin of the black hole is an important parameter which may be responsible for the properties of the inflow and outflow of the material surrounding a black hole. Broad band IR/optical/UV spectrum of the quasar SDSS J094533.99+100950.1 is clearly disk-dominated, with the spectrum peaking up in the observed frequency range. Therefore, disk fitting method usually used for Galactic black holes can be used in this object to determine the black hole spin. We develop the numerical code for computing disk properties, including radius-dependent hardening factor, and we apply the ray-tracing method to incorporate all general relativity effects in light propagation. We show that the simple multicolor disk model gives a good fit, without any other component required, and the disk extends down to the marginally stable orbit. The best fit accretion rate is 0.13, well below the Eddington limit, and the black hole spin is moderate, 0.3. The contour error for the fit combined with the constraints for the black hole mass and the disk inclination gives a constraint that the spin is lower than 0.8. We discuss the sources of possible systematic errors in the parameter determinations

    Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries

    Full text link
    We demonstrate that very massive (>10^8\msun), cosmologically nearby (z<1) black hole binaries (MBHBs), which are primary targets for ongoing and upcoming pulsar timing arrays (PTAs), are particularly appealing multimessenger carriers. According to current models for massive black hole formation and evolution, the planned Square Kilometer Array (SKA) will collect gravitational wave signals from thousands of such massive systems, being able to individually resolve and locate in the sky several of them (maybe up to a hundred). By employing a standard model for the evolution of MBHBs in circumbinary discs, with the aid of dedicated numerical simulations, we characterize the gas-binary interplay, identifying possible electromagnetic signatures of the PTA sources. We concentrate our investigation on two particularly promising scenarios in the high energy domain, namely, the detection of X-ray periodic variability and of double broad K\alpha iron lines. Up to several hundreds of periodic X-ray sources with a flux >10^-13 erg s^-1 cm^-2 will be in the reach of upcoming X-ray observatories. Double relativistic K\alpha lines may be observable in a handful of low redshift (z<0.3) sources by proposed deep X-ray probes, such as Athena. (Abridged)Comment: 19 pages, 11 figures, submitted to MNRAS, minor revision of the reference lis

    Can we measure the accretion efficiency of Active Galactic Nuclei?

    Full text link
    The accretion efficiency for individual black holes is very difficult to determine accurately. There are many factors that can influence each step of the calculation, such as the dust and host galaxy contribution to the observed luminosity, the black hole mass and more importantly, the uncertainties on the bolometric luminosity measurement. Ideally, we would measure the AGN emission at every wavelength, remove the host galaxy and dust, reconstruct the AGN spectral energy distribution and integrate to determine the intrinsic emission and the accretion rate. In reality, this is not possible due to observational limitations and our own galaxy line of sight obscuration. We have then to infer the bolometric luminosity from spectral measurements made in discontinuous wavebands and at different epochs. In this paper we tackle this issue by exploring different methods to determine the bolometric luminosity. We first explore the trend of accretion efficiency with black hole mass (efficiency proportional to M^{\sim 0.5}) found in recent work by Davis & Laor and discuss why this is most likely an artefact of the parameter space covered by their PG quasar sample. We then target small samples of AGN at different redshifts, luminosities and black hole masses to investigate the possible methods to calculate the accretion efficiency. For these sources we are able to determine the mass accretion rate and, with some assumptions, the accretion efficiency distributions. Even though we select the sources for which we are able to determine the parameters more accurately, there are still factors affecting the measurements that are hard to constrain. We suggest methods to overcome these problems based on contemporaneous multi-wavelength data measurements and specifically targeted observations for AGN in different black hole mass ranges.Comment: 16 pages, 20 figures, accepted for publication in MNRA
    corecore