591 research outputs found
Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.
Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes
Recommended from our members
Nonlinear regional warming with increasing CO₂ concentration
When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. 1). There is a need to narrow uncertainty2 in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow—especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods
Relationships between paranoid thinking, self-esteem and the menstrual cycle.
This study aimed to investigate whether paranoid experiences and levels of self-esteem fluctuate over the menstrual cycle and whether levels of self-esteem are lower when perceived persecution is felt to be deserved. Measures of anxiety, depression, persecution, deservedness and self-esteem were completed on-line by 278 women over their menstrual cycle. Responses were compared at the paramenstrual (3 days before and after menses onset) and mid-cycle phase. At the paramenstrual phase persecution, negative self-esteem, anxiety and depression were higher and positive self-esteem was lower than at mid-cycle. A greater proportion of women experienced persecution as deserved at the paramenstrual phase. This was associated with higher depression and negative self-esteem scores. Increased levels of deservedness significantly strengthened the relationship between persecution and negative, but not positive, self-esteem. These findings suggest that the paramenstrual phase is a time of vulnerability to increased paranoid experiences, an increased likelihood that feelings of persecution will feel deserved and lowered self-esteem. The findings support the view that interpersonal sensitivities may be key to menstrual cycle symptoms and have an impact on relationships. Further, the study illustrated that ideas developed for psychosis could make a valuable contribution to understanding and managing this aspect of menstruation-related distress
Eliminating Malaria Vectors.
Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Recommended from our members
High sensitivity of tropical precipitation to local sea surface temperature
Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate1,2,3,4,5. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations6,7,8 affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations9,10 and limited observations of shallow circulations11 further obstruct our understanding of the ocean’s influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations12,13,14,15,16,17,18, including excessively wide tropical rainbands14,18, the ‘double-intertropical convergence zone problem’12,16,17 and too-weak responses to ENSO15. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections
Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications
Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio
Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.
Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events
- …
