138 research outputs found

    Comparison of two models for bridge-assisted charge transfer

    Get PDF
    Based on the reduced density matrix method, we compare two different approaches to calculate the dynamics of the electron transfer in systems with donor, bridge, and acceptor. In the first approach a vibrational substructure is taken into account for each electronic state and the corresponding states are displaced along a common reaction coordinate. In the second approach it is assumed that vibrational relaxation is much faster than the electron transfer and therefore the states are modeled by electronic levels only. In both approaches the system is coupled to a bath of harmonic oscillators but the way of relaxation is quite different. The theory is applied to the electron transfer in H2PZnPQ{\rm H_2P}-{\rm ZnP}-{\rm Q} with free-base porphyrin (H2P{\rm H_2P}) being the donor, zinc porphyrin (ZnP{\rm ZnP}) being the bridge and quinone (Q{\rm Q}) the acceptor. The parameters are chosen as similar as possible for both approaches and the quality of the agreement is discussed.Comment: 12 pages including 4 figures, 1 table, 26 references. For more info see http://eee.tu-chemnitz.de/~kili

    Structure and thermodynamics of multi-component/multi-Yukawa mixtures

    Full text link
    New small angle scattering experiments reveal new peaks in colloidal systems (S.H. Chen et al) in the structure function S(k), in a region that was inaccessible with older instruments. We propose here general closure of the Ornstein Zernike equation, that is the sum of an arbitrary number of yukawas, and that that will go well beyond the MSA . For this closure we get for the Laplace transform of the pair correlation function . This function is easily transformed into S(k) by replacing the Laplace variable by the Fourier wariable. Although the method is general and valid for polydisperse systems, an explicit continued fraction solution is found for the monodisperse case.Comment: 16 page

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA

    Brachyury and Related Tbx Proteins Interact with the Mixl1 Homeodomain Protein and Negatively Regulate Mixl1 Transcriptional Activity

    Get PDF
    Mixl1 is a homeodomain transcription factor required for mesoderm and endoderm patterning during mammalian embryogenesis. Despite its crucial function in development, co-factors that modulate the activity of Mixl1 remain poorly defined. Here we report that Mixl1 interacts physically and functionally with the T-box protein Brachyury and related members of the T-box family of transcription factors. Transcriptional and protein analyses demonstrated overlapping expression of Mixl1 and Brachyury during embryonic stem cell differentiation. In vitro protein interaction studies showed that the Mixl1 with Brachyury associated via their DNA-binding domains and gel shift assays revealed that the Brachyury T-box domain bound to Mixl1-DNA complexes. Furthermore, luciferase reporter experiments indicated that association of Mixl1 with Brachyury and related T-box factors inhibited the transactivating potential of Mixl1 on the Gsc and Pdgfrα promoters. Our results indicate that the activity of Mixl1 can be modulated by protein-protein interactions and that T-box factors can function as negative regulators of Mixl1 activity

    Phase transitions in quantum chromodynamics

    Get PDF
    The current understanding of finite temperature phase transitions in QCD is reviewed. A critical discussion of refined phase transition criteria in numerical lattice simulations and of analytical tools going beyond the mean-field level in effective continuum models for QCD is presented. Theoretical predictions about the order of the transitions are compared with possible experimental manifestations in heavy-ion collisions. Various places in phenomenological descriptions are pointed out, where more reliable data for QCD's equation of state would help in selecting the most realistic scenario among those proposed. Unanswered questions are raised about the relevance of calculations which assume thermodynamic equilibrium. Promising new approaches to implement nonequilibrium aspects in the thermodynamics of heavy-ion collisions are described.Comment: 156 pages, RevTex. Tables II,VIII,IX and Fig.s 1-38 are not included as postscript files. I would like to ask the requestors to copy the missing tables and figures from the corresponding journal-referenc

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore