812 research outputs found

    Space-irrelevant scaling law for fish school sizes

    Full text link
    Universal scaling in the power-law size distribution of pelagic fish schools is established. The power-law exponent of size distributions is extracted through the data collapse. The distribution depends on the school size only through the ratio of the size to the expected size of the schools an arbitrary individual engages in. This expected size is linear in the ratio of the spatial population density of fish to the breakup rate of school. By means of extensive numerical simulations, it is verified that the law is completely independent of the dimension of the space in which the fish move. Besides the scaling analysis on school size distributions, the integrity of schools over extended periods of time is discussed.Comment: 23 pages, 12 figures, to appear in J. Theor. Bio

    Anisotropic Scaling in Layered Aperiodic Ising Systems

    Full text link
    The influence of a layered aperiodic modulation of the couplings on the critical behaviour of the two-dimensional Ising model is studied in the case of marginal perturbations. The aperiodicity is found to induce anisotropic scaling. The anisotropy exponent z, given by the sum of the surface magnetization scaling dimensions, depends continuously on the modulation amplitude. Thus these systems are scale invariant but not conformally invariant at the critical point.Comment: 7 pages, 2 eps-figures, Plain TeX and epsf, minor correction

    Power-law scaling in dimension-to-biomass relationship of fish schools

    Full text link
    Motivated by the finding that there is some biological universality in the relationship between school geometry and school biomass of various pelagic fishes in various conditions, I here establish a scaling law for school dimensions: the school diameter increases as a power-law function of school biomass. The power-law exponent is extracted through the data collapse, and is close to 3/5. This value of the exponent implies that the mean packing density decreases as the school biomass increases, and the packing structure displays a mass-fractal dimension of 5/3. By exploiting an analogy between school geometry and polymer chain statistics, I examine the behavioral algorithm governing the swollen conformation of large-sized schools of pelagics, and I explain the value of the exponent.Comment: 25 pages, 6 figures, to appear in J. Theor. Bio

    Quantifying the Effects of Expert Selection and Elicitation Design on Experts' Confidence in Their Judgments About Future Energy Technologies.

    Get PDF
    Expert elicitations are now frequently used to characterize uncertain future technology outcomes. However, their usefulness is limited, in part because: estimates across studies are not easily comparable; choices in survey design and expert selection may bias results; and overconfidence is a persistent problem. We provide quantitative evidence of how these choices affect experts' estimates. We standardize data from 16 elicitations, involving 169 experts, on the 2030 costs of five energy technologies: nuclear, biofuels, bioelectricity, solar, and carbon capture. We estimate determinants of experts' confidence using survey design, expert characteristics, and public R&D investment levels on which the elicited values are conditional. Our central finding is that when experts respond to elicitations in person (vs. online or mail) they ascribe lower confidence (larger uncertainty) to their estimates, but more optimistic assessments of best-case (10th percentile) outcomes. The effects of expert affiliation and country of residence vary by technology, but in general: academics and public-sector experts express lower confidence than private-sector experts; and E.U. experts are more confident than U.S. experts. Finally, extending previous technology-specific work, higher R&D spending increases experts' uncertainty rather than resolves it. We discuss ways in which these findings should be seriously considered in interpreting the results of existing elicitations and in designing new ones

    Microcanonical temperature for a classical field: application to Bose-Einstein condensation

    Get PDF
    We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a UV cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behaviour of the specific heat.Comment: v1: 9 pages, 5 figures, revtex 4. v2: additional text in response to referee's comments, now 11 pages, to appear in Phys. Rev.

    Quasinormal modes of massive charged flavor branes

    Get PDF
    We present an analysis and classification of vector and scalar fluctuations in a D3/D7 brane setup at finite termperature and baryon density. The system is dual to an N=2 supersymmetric Yang-Mills theory with SU(N_c) gauge group and N_f hypermultiplets in the fundamental representation in the quenched approximation. We improve significantly over previous results on the quasinormal mode spectrum of D7 branes and stress their novel physical interpretation. Amongst our findings is a new purely imaginary scalar mode that becomes tachyonic at sufficiently low temperature and baryon density. We establish the existence of a critical density above which the scalar mode stays in the stable regime for all temperatures. In the vector sector we study the crossover from the hydrodynamic to the quasiparticle regime and find that it moves to shorter wavelengths for lower temperatures. At zero baryon density the quasinormal modes move toward distinct discrete attractor frequencies that depend on the momentum as we increase the temperature. At finite baryon density, however, the trajectories show a turning behavior such that for low temperature the quasinormal mode spectrum approaches the spectrum of the supersymmetric zero temperature normal modes. We interpret this as resolution of the singular quasinormal mode spectrum that appears at the limiting D7 brane embedding at vanishing baryon density.Comment: 56 pages, 40 figure

    Critical behaviour of the Random--Bond Ashkin--Teller Model, a Monte-Carlo study

    Full text link
    The critical behaviour of a bond-disordered Ashkin-Teller model on a square lattice is investigated by intensive Monte-Carlo simulations. A duality transformation is used to locate a critical plane of the disordered model. This critical plane corresponds to the line of critical points of the pure model, along which critical exponents vary continuously. Along this line the scaling exponent corresponding to randomness ϕ=(α/ν)\phi=(\alpha/\nu) varies continuously and is positive so that randomness is relevant and different critical behaviour is expected for the disordered model. We use a cluster algorithm for the Monte Carlo simulations based on the Wolff embedding idea, and perform a finite size scaling study of several critical models, extrapolating between the critical bond-disordered Ising and bond-disordered four state Potts models. The critical behaviour of the disordered model is compared with the critical behaviour of an anisotropic Ashkin-Teller model which is used as a refference pure model. We find no essential change in the order parameters' critical exponents with respect to those of the pure model. The divergence of the specific heat CC is changed dramatically. Our results favor a logarithmic type divergence at TcT_{c}, ClogLC\sim \log L for the random bond Ashkin-Teller and four state Potts models and CloglogLC\sim \log \log L for the random bond Ising model.Comment: RevTex, 14 figures in tar compressed form included, Submitted to Phys. Rev.

    Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes

    Get PDF
    Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH4) from sediments. Ebullitive CH4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH4-cycling microorganisms and syntrophs, were predictive of porewater CH4 concentrations. Results suggest that deeper lake regions, which currently emit less CH4 than shallower edges, could add substantially to CH4 emissions in a warmer Arctic and that CH4 emission predictions may be improved by accounting for spatial variations in sediment microbiota

    Rigorous Probabilistic Analysis of Equilibrium Crystal Shapes

    Full text link
    The rigorous microscopic theory of equilibrium crystal shapes has made enormous progress during the last decade. We review here the main results which have been obtained, both in two and higher dimensions. In particular, we describe how the phenomenological Wulff and Winterbottom constructions can be derived from the microscopic description provided by the equilibrium statistical mechanics of lattice gases. We focus on the main conceptual issues and describe the central ideas of the existing approaches.Comment: To appear in the March 2000 special issue of Journal of Mathematical Physics on Probabilistic Methods in Statistical Physic
    corecore