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ABSTRACT: 
Expert elicitations are frequently used to characterize uncertain future technology outcomes. However, their 
usefulness is limited, in part because: estimates across studies are not easily comparable; choices in survey 
design and expert selection may bias results; and over-confidence is a persistent problem. We provide 
quantitative evidence of how these choices affect experts’ estimates. We harmonize data from 16 
elicitations, involving 169 experts, on the 2030 costs of 5 energy technologies: nuclear, biofuels, 
bioelectricity, solar, and carbon capture. We estimate determinants of experts’ confidence using expert 
characteristics, survey design, and public R&D investment levels on which the elicited values are 
conditional.  We find that when experts respond to elicitations in person (vs. online or mail) they ascribe 
lower confidence (larger uncertainty) to their estimates, but more optimistic assessments of best-case (10th 
percentile) outcomes.  The impact of expert affiliation (government, private sector, or academic) and 
geography (US or EU) varies by technology.  Academics and public sector experts generally express lower 
confidence than private sector experts. EU experts are more confident than US experts, driven mainly by 
biofuel costs.  Higher R&D spending can increase uncertainty rather than resolve it, but it consistently 
reduces best-case cost estimates. These results indicate the source, direction, and size of bias in a large 
sample of energy technology elicitations.  They also point to the technology specificity of some of the 
effects.  We discuss ways in which these biases should be seriously considered in interpreting the results of 
existing elicitations and in designing new ones. 
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MAIN TEXT: 

1 INTRODUCTION 

Policy makers addressing science and innovation issues frequently confront the challenge of making 
decisions that affect the development of technologies.  Their decisions rely on explicit(1) or implicit(2) 
characterizations of the anticipated cost and performance of specific technologies. However, both 
technology outcomes and consequent social impacts are notoriously difficult to predict, because 
technologies change over time, often in ways that diverge from historical trends(3).  Expert elicitations allow 
analysts to make use of information collected from experienced professionals about the future of specific 
technologies that may not be available from other data sources. Importantly, expert elicitations also provide 
measures of uncertainty associated with the central estimates. Protocols for data collection are designed to 
reduce biases and encourage considered judgments(4-6).   These data can provide crucial information for 
policy design. Indeed, although in the past they were used mainly in the private sector(7) expert elicitations 
are increasingly used in policy making, starting in the 1970s with the U.S. Environmental Protection 
Agency (EPA), and now with at least five other federal agencies and international organizations using 
them(8, 9). 
 
Because of the substantial externalities and the very long time horizons inherent in energy systems, policy 
makers are particularly interested in using elicitations to inform decisions around public funding to support 
innovation in energy technologies.  In the U.S, for instance, the National Research Council published a 
strong recommendation that the U.S. Department of Energy (DOE) use expert elicitations to inform for 
their R&D allocation decisions to probabilistically characterize the expected outcomes of R&D 
investments(9). Over the past decade, optimism about the potential for expert elicitations to inform public 
decisions stimulated the launch of more than twenty expert elicitation studies on several important energy 



 
 

 
 
 

technologies.  Some ask questions about future cost and performance conditional on public R&D 
investments and a subset of these elicitations are listed in Table I.  However, differences in protocol design 
(metrics, assumptions, timeframes, methods for administering the surveys) and in the backgrounds of 
experts selected (institutional affiliation and nationality) make it hard for the analyst or policy maker to 
compare the results from these studies on a consistent basis. This issue of how to utilize and learn from the 
existing expert elicitations for future elicitations extends beyond the debate that recently took place in this 
journal regarding how, or whether, to derive consensus from them(10-14).   A key question is whether 
differences between studies themselves affect the elicitation results, both in terms of the distribution and 
central estimates. 
 
Morgan provided a recent review of how to think about selecting experts, in part to reduce bias(7). However, 
despite a robust discourse about how to make use of elicited data, the literature does not yet include a 
quantitative assessment of how differences in study design and expert selection affect elicited values(15-21).  
Two recent articles provide first steps in this direction by focusing on elicitations in nuclear and solar 
technologies (22, 23). In this paper, we expand the analysis by assessing the roles of expert and survey 
characteristics on the experts’ uncertainty range and best-case estimates in five key energy technologies – 
nuclear fission, biofuels, bioelectricity, solar, and carbon capture in coal power plans.  We address the 
research question: how do elicitation design and expert selection choices affect the confidence of experts’ 
responses to elicitations of future technology outcomes? 
 
Our results provide a clearer sense of how much uncertainty exists in anticipated technology outcomes—
and how elicitation design can affect that uncertainty—and in doing so they help interpret the results of 
existing elicitations and provide evidence to improve the design of future elicitations. The next section 
provides an overview of the data we use and our approach to empirically addressing the research question 



 
 

 
 
 

above.  Section 3 presents the results.  Section 4 includes a discussion of implications for policy makers, 
particularly on debiasing, geographic considerations, and the effect of R&D on uncertainty.  This discussion 
mentions ways in which the results serve as a basis for improving policy making— for example, in 
government agencies such as the U.S. Dept. of Energy, multiple Congressional committees, and the 
European Commission—by facilitating the interpretation of existing energy technology elicitations. 

2 APPROACH 

2.1 The elicitation data 
We collect and standardize data from 16 expert elicitations of expected technology costs in 2030.1  These 
studies include five energy technologies: nuclear fission power, biofuels, bioelectricity, solar photovoltaic 
power, and carbon capture and storage (CCS) for power generation.2 The future costs of these technologies 
are important for policymakers facing decisions on climate change as well as on energy supply(24, 25). As 
shown in Table I, the diverse characteristics of these 16 elicitations conducted over a relatively short period 
of time provide an unusual opportunity to study whether selection and survey design affect experts’ 
estimates.  Similar to previous work on infectious disease and marine ecology, our general approach is to 
regress elicitation responses on study and expert characteristics(21).  
 

The expert elicitations in Table I 

Table I include each expert’s estimates of future costs at three points on their tacit probability distribution 
of future costs. Nine of the 178 experts were included in two studies as opposed to just one, and thus the 
                                                   
 
1 Throughout, we refer to `costs’ as the cost in 2030 to an adopter of the technology producing useful energy. 
2 Three additional studies were ultimately dropped from the analyses due to lack of specification of public R&D 
funding conditions. 



 
 

 
 
 

dataset includes 169 unique experts.  In addition to having a very small number of overlapping experts, the 
overlaps happened primarily in the technology areas with the largest number of experts (nuclear and solar), 
with only two experts overlapping on two other surveys. Thus, treating repeat experts as individual 
responses in two different surveys is not expected to bias the results.   
 
Each study made substantial efforts to reduce bias and overconfidence. For example, in the online Harvard 
nuclear study(26), after reviewing background information on nuclear costs and public R&D budgets, experts 
engaged in modules on reducing bias, overconfidence, and estimating percentiles.  The module on 
overconfidence includes a discussion and a widely used figure illustrating the poor ability of experts to 
estimate their confidence around the speed of light(27). To reduce overconfidence, experts were asked to 
provide the 90th and 10th percentiles before the 50th percentile and were instructed to review their answers, 
imagining alternate scenarios wherein the true value is outside the range they have provided through six 
steps. The module on bias cautions experts to be aware of the tendency of experts to be biased due to 
familiar experiences and subjects.  The percentiles section included an explanation of how to think about 
percentiles, giving examples of what the 10th, 90th, and 50th percentiles represent, as well as a Figure that 
mimicked the interactive graph experts would generate in their answers later on.  The 10th percentile (P10) 
is the expert’s estimate of a “best case” outcome, the 50th percentile (P50) is the “most likely” outcome, 
and the 90th percentile (P90) is the other extreme, the worst case they can imagine.3  
 

                                                   
 
3 One exception were the UMass studies, which asked experts about probabilities of particular goals being met and 
then converted the answers to percentiles, as mentioned below and detailed in the SI. 



 
 

 
 
 

We obtained these elicitation data from the original authors and converted them into common units of 
levelized energy cost (LEC) in units of 2010$/kWh.4 Even though they all produce energy, the technologies 
are sufficiently heterogeneous that we use a slightly different system boundary in calculating each LEC: 
solar includes the full levelized costs of each unit of electricity; bioelectricity uses the non-fuel levelized 
cost of electricity; biofuel uses the non-fuel levelized costs of each unit of energy; nuclear uses the levelized 
capital costs of electricity; and CCS uses the levelized costs of the additional capital costs for each unit of 
electricity produced.  In the cases of solar data from Harvard and CMU, and the CCS data from UMass, a 
simple techno-economic model was used to produce LEC estimates from elicited components of the LEC. 
 
Each study asked questions about future costs under one or more levels of public R&D funding.  Table I 
shows how the R&D scenario terminology used in the various studies was translated into three the common 
R&D scenarios we use in this paper: Low, Mid, and High.  The Low R&D scenario is largely consistent 
with a business as usual public R&D funding case for that particular technology in the particular region in 
which the elicitation was conducted.  The Mid R&D scenario is consistent with a significant increase in 
R&D funding across surveys. In the case of Harvard this significant increase was the expert’s 
“recommended” R&D levels, in the FEEM surveys (with the exception of the nuclear FEEM survey, which 
was consistent with Harvard’s definition) the Mid R&D scenario was a “50% increase in the BAU funding.”  
The High R&D scenario was consistent with a very large increase in R&D funding.  In the case of the CMU 
data this was consistent with 10 times the “BAU” R&D level.  The High R&D scenario in the Harvard 
survey was 10 times the “recommended” R&D scenario. In the FEEM surveys, the High R&D scenario 

                                                   
 
4 Levelized costs are common in energy and involve summing amortized up-front costs and variable costs and then 
dividing by units of energy produced. 



 
 

 
 
 

was 2 times the BAU level.  Finally, the UMass surveys provided funding amounts and used the terms 
“Low”, “Mid” and “High” R&D scenarios directly, and we use the same terminology here5.   
 
Figure 1 and Figure 2 show the elicited point estimates (at the 10th, 50th, and 90th percentiles) for the five 
energy technologies under the each of the three R&D scenarios separately for each of the studies. Table II 
shows descriptive statistics for the individual participant data of the 16 expert elicitations. For the binary 
variables, the average indicates the fraction of the observations representing various technologies, types of 
experts, R&D levels, etc.  Explanations of technology sub-type, study characteristics, and R&D scenarios 
on which the estimates are conditional are documented in the SI. 

2.2 Dependent variables 
In this study, we focus on two dependent variables. First, given the growing interest in consideration of 
uncertainty in science policy decisions(9), and the vast literature on the cognitive biases in the subjective 
assessment of probabilities(28, 29), we focus here on experts’ confidence around central estimates.  The 
uncertainty range (“Urange”, henceforth) is defined as the difference between the 90th and 10th percentile 
divided by the 50th: 

Urange = (P90-P10)/P50        (1) 
It measures the percentage variation from each expert’s median estimate within each of the R&D scenarios.  
Figure 3 shows probability density functions of the Uranges for all data in our sample, both overall and for 
each technology.  Second, because the left tail of the cost distribution (low costs) is of particular interest to 

                                                   
 
5 The solar UMass survey is an exception, since it only has two R&D scenarios. 



 
 

 
 
 

policy makers—and because it adds insight on what is driving changes in Urange—we also include models 
in which we use the best case estimates (P10) as the dependent variable.6 
 
Note that since Urange is a normalized metric, it can be pooled for all technologies, even if the standardized 
costs measure different parts of the technology. Hence, for this metric we present both pooled results and 
technology specific to show the robustness of our results to different assumptions. Conversely, elicited 
percentile metrics can be meaningfully compared only within technology due to the differences in what is 
included in the standardized costs. 

2.3 Independent variables 
We assess the extent to which the following four aspects may systematically affect the uncertainty range 
and the best case estimates: (a) technology characteristics, (b) expert elicitation survey design, (c) expert 
characteristics, and (d) R&D investment levels on which the elicited values are conditional. We selected 
these factors because the available qualitative literature on the subject suggests they have an impact on 
elicited values.  
 
Uncertainty ranges and best-case estimates across studies can vary due to the diversity in the technologies 
considered.  Figure 1, for instance, highlights the wide diversity of expert opinion on the 50th percentile 
2030 estimates of solar and nuclear technologies under the low funding scenario, highlighting the large 
differences within solar and nuclear but also across both technology areas. Possible explanations for such 
differences across technology areas include the maturity of a given technology, the extent to which learning-

                                                   
 
6 In the SI we also include results on the relationship between the variables of interest and the 50th 
percentile estimate. 



 
 

 
 
 

by-doing has improved costs in the past, the number of technological paths that have already been explored, 
and the specific efficiency of each technological path.  In our pooled analysis of Urange, we include 
dummies for bioelec, biofuel, nuclear, solar, and ccs to capture differences in average Urange values across 
technologies, while such differences are already implicit in the technology specific regressions. 
 
The literature on elicitation has looked at the differences in the design of elicitation protocols, highlighting 
in particular the importance of the expert selection phase and of the method by which the survey is 
administered (in person, via mail, or internet)(15-20, 30). It devotes significant attention to issues such as the 
optimal number experts and the careful sampling for expert selection. It also points to the advantages of in-
person elicitations(5, 17); during in-person interviews the researcher can devote more time to “debiasing” and 
can ask follow-up questions that prompt experts to consider a wider range of possible outcomes. However, 
in-person elicitations are far more costly and time-consuming, particularly for investigators. Researchers 
address this trade-off by carefully designing mail or online elicitation protocols. Specifically, they provide 
very detailed background information to reduce bias, and often resort to interactive tools such as 
visualization software to provide timely feedback to the expert and given him/her opportunities to correct 
their answers. To date, there is no quantitative evidence indicating whether, even in light of careful protocol 
design, there is a systematic difference in the level of confidence between experts involved in the two types 
of elicitations. We code each elicitation using the binary variable, inperson, which assumes the value of 1 
for in-person interviews, and zero otherwise. 
 
Similarly, expert background (e.g., institutional affiliation and country) is likely to affect cost estimates(30, 

31).  Moreover, elicited data is likely to be subject to availability and anchoring heuristics associated with 
experts’ environment and experiences(29).  Experts from industry are likely exposed to different information 
sets than those from academia and the public sector, since they are likely working at different stages of 



 
 

 
 
 

technology development, participating in different conferences, and interacting with different colleagues. 
Along the same lines, experts living in different geographical areas may have varying experiences with cost 
overruns, public opposition, and policy support. We code each expert as based in academia, the private, or 
the public sector.  Furthermore, since each expert was asked to provide estimates for the region in which 
they work, we code this information as EU or US. 
 

Finally, the suggested public R&D investment levels included in the elicitation can have an impact on 
uncertainty. The direction of this effect is largely an empirical question. In fact, experts may make 
estimates with wider uncertainty ranges (lower confidence) under higher R&D investment 
assumptions if they have difficulties imagining outcomes that are far away from the actual state of 
the world. However, experts could also have narrower uncertainty ranges, if they expect higher R&D 
to solve technical issues that are unresolved under scenarios with lower R&D investments. Our 
question related to the impact of R&D on the uncertainty about the future cost of energy technologies 
is similar to that in Zickfeld et al. (2010) who asked experts about the role of additional research in 
reducing uncertainty around the global temperature response to specific trajectories of radiative 
forcing(32). We include variables for the levels of public R&D (RD) in million 2010 US$/year, as well 
as binary variables representing bins of low (RD_lo), medium (RD_mid), and high (RD_hi) R&D.   

Table I shows the assignment of R&D funding levels in the different studies to these three bins. 

2.4 Estimation approach 
Given the heterogeneity across studies, we use regressions to control for confounding factors at the 
individual expert level and for treatment differences between studies(33, 34).  Our basic specification is as 
follows:  

ln = + ln S + ln + δ ln + θ ln + +    (2) 



 
 

 
 
 

where i indicates expert, t technology, p a given sub-technology (subtech), and r the specific R&D 
scenario (or level) on which the elicited metric is conditional. We set our dependent variable, Y as 
Urange to measure confidence and as P10 to assess best case outcomes. S is a dummy variable equal 
to one if the survey was conducted in person;  are dummy variables indicating the technology focus 
of the specific elicitation, with solar as the reference category;  are dummy variables indicating the 
expert was from academia or the public sector, with private sector being the reference category; and 

 are variables indicating the R&D scenario with which each estimate is associated. Summary 
statistics are presented in  

Table I and Table II.  We propose two specifications for R. In the first, dummy variables indicate medium 
and high funding (with business-as-usual funding being the reference). In a second specification, we use 
the continuous R&D variable (in constant 2010 dollars) to test the robustness of the binned specification 
and explore the possibility of diminishing marginal returns by including the squared term in the regression.  
 
We use random effects models in which each observation is a combination of expert and sub-technology, 
observed over different R&D scenarios, to control for expert effects, in addition to the other control 
variables related to survey design, expert selection, and R&D investment level(23). Standard errors are 
clustered at the level of expert and subtechnology.   

3 RESULTS 

3.1 Estimating Uncertainty 
We use equation 2 to estimate uncertainty range, first by pooling data for all technologies (Models 1 and 
2), and then for each of the five technologies separately (Table III). 



 
 

 
 
 

3.1.1 Relationship between Urange and survey design characteristics 
Models 1 and 2 in Table III—pooling all technologies and including technology and random effects—
indicate that elicitations conducted in person have uncertainty ranges that are 33% greater than those that 
were conducted online or over the mail, on average and ceteris paribus. This positive and statistically 
significant result (at a 1% level) is robust to conducting technology specific analysis (as shown in Models 
3-7), the only exception being the positive but not statistically significant coefficient for bioelectricity 
(Model 5).  These results indicate that when experts respond to elicitations on the future costs of energy 
technologies in person, they ascribe lower confidence (larger uncertainty) to their estimates than when 
responding via mail or internet.  In the SI we include a figure showing the effect on Urange of shifting to 
in-person elicitations (Figure S-3). 

3.1.2 Relationship between Urange and expert characteristics 
In Model 1 of Table III, the coefficient associated with experts in academia suggests that, on average and 
across technologies, academics’ Uranges are roughly 12% greater than those in the private sector.  Public 
sector experts are also associated with higher Uranges than those in the private sector, but the estimate is 
statistically significant only when using a continuous R&D variable (Model 2). Looking at the technology 
specific regressions it is clear that both the magnitude and the precision of the estimate are driven by nuclear 
experts (Model 4).  Overall, EU experts appear, on average, more confident, with an uncertainty range that 
is 12% lower than that of US experts (Model 1 and Model 2). In this case, the magnitude and significance 
is mostly attributable to experts in biofuel technologies (Model 5). Hence, differences in elicited estimates 
due to expert background and geographic area are technology specific.  This difference in Urange depending 
on expert characteristics could be explained by availability biases and by differences in local permitting 
and regulatory costs. 



 
 

 
 
 

3.1.3 Relationship between Urange and R&D variables 
Table III indicates that, overall, the three R&D scenarios upon which the cost estimates are conditional do 
not have a significant impact on experts’ confidence. However, when looking at the technology-specific 
results, the higher R&D scenarios are associated with more uncertain estimates (lower confidence) around 
future costs for solar, and less uncertain estimates (higher confidence) for biofuels. These effects may be 
due to increasing R&D investments pushing researchers to expand the range of technological possibilities 
for solar, whereas in biofuels experts may be more certain about the possibilities due to a focus on particular 
technical bottlenecks to overcome. In this respect, note that solar is the technology for which R&D has the 
largest effect on median (P50) future costs (see Table S-5 in the SI). Conversely, for biofuels the mid and 
high R&D scenarios are associated with the lowest uncertainty ranges. 

3.1.4 Relationship between Urange and technology categories 
Pooled Models 1 and 2 in Table III show that, on average, Urange in solar (the omitted technology dummy) 
is statistically different from those in the other four technology categories. Urange is on average 17%, 19%, 
18% and 63% higher for nuclear, bioelectricity, biofuels, and CCS experts, respectively, compared to solar. 
That different technologies are associated with different perceptions of uncertainty is not surprising, but to 
the best of our knowledge this is the first empirical assessment of the extent to which experts’ confidence 
is greater in some technologies versus others. In the specific case of the technologies considered here, the 
small number of new constructions in both nuclear and CCS might be a source of their higher uncertainty. 
 
We acknowledge that the range of observed characteristics we control for in our regression is unlikely to 
account for all variation beyond the core technical judgments we are attempting to elicit. For example, in 
the SI we discuss our attempt to evaluate the impact of two additional elicitation variables of interest to the 
meta-analysis literature: the year in which the study was conducted and whether or not the results were 



 
 

 
 
 

published in the peer-reviewed literature. We were however unable to determine their impact in a robust 
manner. First, all elicitations were carried out only a few years apart, providing very little variation.  
However, we do see that most of the elapsed time between the earliest and latest studies is due to the UMass 
studies; results in the SI shows that when we drop UMass, we get similar results. Second, in a few cases 
the year of elicitation was different between different studies, resulting in collinearity issues with other 
variables. The same is true for the “published” variable vis-a-vis the E.U. and in-person variables for some 
technologies.  We drop the “published” dummy variable because researchers decisions to publish some of 
the elicitations in a non-peer review outlet were unrelated to the design or implementation of the elicitation. 

3.2 Estimating best case outcomes 
To add insight on what may be driving the Urange results, we also regress the 10th percentile cost estimate 
(the best-case outcome) on the independent variables separately by technology (Table IV).  The 
heterogeneity in the results for expert selection variables across the different technologies in the case of 
P10 is higher than in the case of Urange. Academic experts provided more optimistic P10 estimates for 
nuclear and CCS, and more pessimistic estimates for biofuels than their industry counterparts (see Models 
2, 3, and 4, respectively, in Table IV).  Public sector experts provided more optimistic P10 estimates for 
nuclear and bioelectricity, and more pessimistic estimates for biofuels than their industry counterparts. EU 
experts are more pessimistic about P10 than their US counterparts in bioenergy and biofuels. This suggests 
that previous experiences may be more conducive to differences in the sign of perceptions of best cases 
than on the uncertainty range in the technology areas evaluated in this study. Furthermore, in line with the 
Urange results, the results from the regressions on the best case outcome confirm that the relationship 
between expert background and the best-case estimates is technology specific.  The finding that for different 
technologies different types of experts are more optimistic could be explained by availability biases, i.e., 
by the fact that experts working in the same technology may face different types of information and 
experiences depending on which sector they are in.  For instance, nuclear industry experts in the EU and 



 
 

 
 
 

the US have less ability to work on actual deployment projects when compared to solar industry experts 
since over the past couple of decades solar deployment in the EU and the US has been much more prevalent 
than nuclear deployment.  This may lead solar industry and academic experts to have a similar sense of 
what future costs may be  (no appreciable differences were found in their estimates of the uncertainty and 
best case costs). In contrast, nuclear academic experts were systematically more optimistic about future 
costs and less uncertain when compared to nuclear industry experts. 
 
As expected, higher R&D investments are associated with lower P10 values. This result is statistically 
significant for all technologies, with the exception of CCS, which has only 18 observations.  Note also that 
the sizes of the coefficients are quite different among the technologies in Models 1-5.  That the R&D 
amounts in each bin vary by technology may explain the differences in the sizes of the coefficients.  They 
may also reflect different beliefs about the impact those R&D investments will have on future outcomes.  
In particular, the coefficient of the impact of the mid and high R&D scenarios on P10 is largest in the case 
of solar power.  These differences may get at fundamental differences in technological opportunity across 
technologies(35). 
 
Similarly to the results for Urange, the effect of the in-person variable on P10 is mostly consistent across 
the five technologies.  It is negative and significant in the solar, nuclear and biofuel regressions (those with 
the largest number of observations) and insignificant for bioelectricity and CCS.   Overall, these results 
suggest that in-person elicitations are likely to be associated with more optimistic P10 estimates compared 
to mail or internet elicitations.  Lower P10 values help explain why in-person is associated with greater 
uncertainty ranges (lower confidence), as discussed above.  

4 IMPLICATIONS 



 
 

 
 
 

Our analysis provides three main results quantifying: (1) how elicitation design affects expert confidence; 
(2) how expert confidence varies across by expert background, region, and technology; and (3) how R&D 
investments affect expert confidence.   In addition, we show that expert’s best guess is also shaped in 
important ways (sometimes different to those we showed in the case of the uncertainty) by various variables.  
Our core finding—that elicitation design affects expert confidence—in combination with the other results, 
has several implications for policy design, as well as for future elicitation research.  The realm of public 
funding of technology includes an inherent aspect of uncertainty.  An implication that runs through the 
various points in the discussion below is that, in the domain of energy technology, policy analysts and 
decision makers will have to operate under conditions of more rather than less uncertainty, even if they 
increase public R&D funding. The resulting need for nuanced and cautious interpretation of elicitations 
results exacerbates what is already a persistent challenge: how to communicate the results of expert 
elicitations to policy analysts who need to situate these results into a much more complicated world than a 
well-structured elicitation instrument could ever control for.  

4.1 Minimizing expert over-confidence is costly and valuable  
A longstanding challenge in expert elicitation has been to find ways to overcome experts’ biases to think 
too narrowly about possible outcomes—even if many decision makers consider results with high confidence 
to be more useful than those with low confidence(14).  Given what we know about expert over-confidence 
and the results from this analysis, consumers of elicitation studies in energy technologies should pay close 
attention to the in-person variable results.  That in-person elicitations reduce confidence indicates that on-
line techniques are still not yet sufficiently close substitutes for in-person interviews.  We think this result 
is particularly robust for two reasons. First, because the result was obtained even after controlling for other 
possible variables affecting the uncertainty range, such as the background or geographic focus of the expert. 
Second, the authors of the online and mail elicitations included here were well aware of overconfidence 
and made substantial efforts to address it; they provided examples to make experts aware of their potential 



 
 

 
 
 

biases, instructions of steps to follow, and interactive tools to help them visualize their responses (and how 
they related to each other) allowing experts to adjust responses as they went along.  However, a well-trained 
interviewer can perhaps better convey the importance of thinking about extremes, ask relevant follow up 
questions, and prod an expert to move beyond glib responses and gut feeling.  A possible rival interpretation 
is selection; experts who are amenable to investing their time in an in-person interview may be more likely 
to have a broader view of uncertainty.  In either case, in-person reduces over-confidence in the results.  Note 
also in Table IV that in-person increased the uncertainty range by reducing the best case (P10), rather than 
increasing the worst case (P90 in the SI).  These results suggest that the mechanism by which in-person 
addresses over-confidence is by prompting consideration of technological possibilities, rather than in 
identifying potential obstacles. 
 
In-person interviews are more time consuming when considering the sum of the full set of activities 
involved in conducting an elicitation: researcher preparation, travel, interview, and post-interview 
processing, as well as experts’ participation and travel (in some cases).  Is the value of information worth 
it?  Scaling up efforts to perform more elicitations might ultimately be helped by comparing the benefits of 
lower confidence to the costs on in-person interviews, as well as to the alternative of improving online 
elicitations. An important opportunity of future work would be to test the results presented here in an 
experimental setting. Such work could build on recent work in which EU experts and US experts responded 
to the same online elicitation tool(26).  This level of control would allow researchers to identify statistically 
significant differences in the answers of experts in both regions and could also be used to assess the effect 
of question format(21). 

4.2 Public R&D can increase uncertainty 
A potentially disappointing result for policymakers confronting the large uncertainty in future energy 
technology costs is that R&D investment does not appear to necessarily reduce uncertainty.  From a social 



 
 

 
 
 

perspective, public R&D investments in energy are thought to provide multiple public goods: 1) they can 
improve technology outcomes, but 2) they can also generate information that can, for example, help inform 
future decisions(36).  Our results suggest that experts expect the former but not the latter.  High R&D 
investments are consistently associated with lower P10 cost estimates, but high R&D scenarios do not affect 
experts’ confidence in the outcomes.  These results, for these five technologies, provide a much stronger 
case that R&D will improve technologies by 2030 than it does that more R&D will clarify expectations 
about which technologies will be most promising between now and then, given that expectations around a 
best guess are unlikely to converge in the short term.  Instead, the results show that instead of waiting for 
the uncertainty to be resolved (which R&D may not be able to accomplish in the short term) R&D 
investment decisions need to fully embrace the large uncertainties (and opportunities) awarded by R&D in 
the long-term in an option value framework.  Given the difficulties in communicating uncertainty to policy 
makers and the public, supporting R&D investment decisions incorporating (perhaps even larger) 
uncertainties provides real challenges to R&D program evaluation efforts between now and 2030.  The 
future of key energy technologies is likely to get murkier rather than clearer if the public sector increases 
support for it.  That will be particularly challenging in that higher public R&D budgets are where program 
evaluation is most beneficial and in which close scrutiny is more likely.  On a related note, the results of 
this study could be utilized in modeling exercises that aim to inform policy design related to energy 
technologies.  These include the Energy Modeling Forum (EMF) and the Intergovernmental Panel on 
Climate Change (IPCC). The study authors have been interacting with the EMF group on a formal basis 
and expect that this interaction will continue to help transfer the insights from this study into a range of 
integrated assessment models, building on other work(37, 38). 

4.3 A heterogeneous pool of experts is needed for robust insights 
As indicated by the effects of expert affiliation and location, expert selection has the potential to influence 
results. In specific technologies, US experts were more uncertain about future costs than EU experts and 



 
 

 
 
 

academics are generally more uncertain than their industry counterparts. Provided that all are experts, 
interpreting this result for designing future elicitations is less straightforward than the in-person result.  This 
could again be related to availability biases—experts not engaged in taking technologies into the market 
may have more uncertainty regarding what may take to achieve commercialization, including uncertainties 
related to technology performance at scale. European experts may have lower uncertainty in general 
because they have had more recent experience with biofuels (a technology for which EU is statistically 
significant), and other technologies (for which the coefficient is also negative but not significant). In sum, 
these results provide a strong reminder for expert elicitation researchers, and consumers of them, to rely on 
a heterogeneous set of experts to limit the bias in the elicited results since experts’ environment may affect 
their access to disparate information and thus their confidence about future technology costs.  If we want a 
broad swatch of expertise, it seems unwise to preferentially include Americans and academics to other types 
of experts in order to minimize within-expert over-confidence.    In some cases, selecting a heterogeneous 
set of experts may not make a difference, as for instance in the case of the solar elicitations in our sample. 
However, given our inability to predict ex ante whether or not different experts will be associated with 
estimates that are statistically different, the robust approach requires a broad composition of expert 
backgrounds to be represented. 

4.4  Interpreting local perspectives in a global system 
Our results overall show significant variation in expert estimates across regions, even after controlling for 
other possible confounding factors.  Further, we know from other studies that substantial within-region 
variation exists, even for globally traded and apparently homogenous technologies(39-41).  Three main 
implications follow.  First, when dealing with public policy choices regarding energy technologies, there is 
no “law of one price”(42).  The variation in best estimates and expert confidence across different technologies 
in the same region can be large, and such differences need to be factored into choices regarding public R&D 
portfolio investments and other policies affected by expectations future technology costs.  Second, the 



 
 

 
 
 

variation within regions is accompanied by significant variation across regions. This means that energy 
technology markets, which exhibit some differences in LEC costs today(43) are not expected to have globally 
equivalent costs in the medium term. As a result, the policy choices and modeling efforts in different regions 
need to be tailored accordingly. Third, this raises questions about the geographic external validity of expert 
elicitation exercises.  Can insights from existent expert elicitation studies—overwhelmingly conducted in 
developed countries—be applied to places with different technology and policy contexts, such as those of 
China or other developing countries?  The answer is important because those are the regions with the largest 
expected energy demand in the decades to come. The differences in expectations about future technology 
cost across regions imply the need to conduct expert elicitations within those contexts to inform policy 
decisions strongly shaped by expectations about the evolution of technology.  

4.5 Conclusion 
Despite the dearth of alternative means by which to estimate future technology outcomes, expert elicitations 
remain vulnerable to criticisms of being unrepresentative, merely subjective, and based on opinions rather 
than facts. If elicitations are to be considered important evidence to inform decisions, involving potentially 
billions of dollars of public funds, they need to be credible, which requires an improved understanding of 
what determines elicitation outcomes. We suggest that an empirically-based understanding of what drives 
the range of experts’ responses can increase the effectiveness of expert elicitations in supporting policy 
decisions involving science and innovation.  Improved credibility will be socially useful even if—and 
perhaps especially if—the primary influence of elicitation studies is to broaden policy makers’ 
understanding of what is possible in the future. 
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FIGURES 

 
Figure 1. Levelized cost estimates for 2030 from each expert for solar PV (top panel) and nuclear power (bottom 
panel).  Circles correspond to the P50 for the “low” public R&D budget scenario, squares for mid R&D, and 
triangles for high R&D.  Colored lines from markers extend to P10 and P90 levels: black for Low, grey for 
Mid, and red for High R&D levels.  Experts are grouped by study and sorted by P10 response for low R&D.  
All costs are in $/MWh. The grey and white backgrounds separate surveys, with the name of the group 
conducting each study shown in black.  Two UMass nuclear expert provided low R&D values that are not 
shown, since we cut the y-axis at 0.35 to facilitate the inspection: expert #1 has a 90th percentile estimate at 0.80 
and expert #2 has 50th and 90th percentiles of 0.78 and 1.65 $/MWh, respectively. 
  



 
 

 
 
 

 Figure 2.  Levelized cost estimates for 2030 from each expert for biofuel non-energy cost (top-panel) and for 
bioelectricity non-energy cost and additional CCS levelized capital cost (both on the bottom panel).  Circles 
correspond to the P50 for the “low” public R&D budget scenario, squares for mid R&D, and triangles for high 
R&D.  Colored lines from markers extend to P10 and P90 levels: black for Low, grey for Mid, and red for High 
R&D levels.  Experts are grouped by study and sorted by P10 response for low R&D.  All costs are in $/MWh.  
The grey and white backgrounds separate surveys, with the name of the group conducting that study shown in 
black. 
 



 
 

 
 
 

 
Figure 3. Distributions of uncertainty range (Urange) for all elicitations and R&D levels: pooling all five 
technologies (line) and for each technology individually (gray area).  
 
  



 
 

 
 
 

TABLES 

Table I.  Characteristics of expert elicitation studies used. 
Study code Group(ref) Experts Obs Year of elicitation In-person Bins for study's R&D scenarios 

Drop Low Mid High 
1. Nuclear         11 UMass(44) 4 12 2007 YES  Low Base High 

12 Harvard(26) 25 162 2010 NO 0.5X BAU Rec 10x 
13 FEEM(26) 30 172 2011 NO 0.5X BAU Rec 10x 
14 CMU(45) 12 10 2011 YES  

Status quo -- -- 
2. Solar         21 UMass(46) 3 6 2007 YES  Low Mid -- 

22 Harvard(47) 9 69 2010 NO 0.5X BAU Rec 10x 
23 FEEM(31) 13 39 2011 YES  BAU 1.5x 2x 
24 CMU(48) 18 48 2008 YES 10x & Dep. Status quo -- 10x 

3. Bioelectricity         31 UMass(Unp.) 4 12 2007 YES  Low Mid High 
32 Harvard(47) 7 21 2010 NO 0.5X BAU Rec 10x rec 
33 FEEM(49) 16 38 2011 YES  Low 1.5x 2x 

4. Biofuel         41 UMass(50) 3 6 2008 YES   Mid High 
42 Harvard(47) 8 90 2010 NO 0.5X Low Rec 10x 
43 FEEM(49) 15 36 2011 YES  Low 1.5x 2x 

5. Carbon capture        51 UMass(51) 3 6 2007 YES  Low Mid High 
52 Harvard(52) 8 15 2010 NO 0.5X BAU Rec 10x 

Total  178 742                 
Table notes: BAU = business as usual; Rec = recommended; Dep= deployment; Unp.=unpublished.    



 
 

 
 
 

Table II. Descriptive statistics for dependent (Urange, P10_LEC) and independent variables.  Variables from 
RD_hi to bottom of table are binary. 

 Variable Obs Mean Std. Dev. Min Max 
      Urange 742  0.869   2.186   0.054   57.54  
P10_LEC 742  0.058   0.057   0    0.480  
      RD 694  3,549   8,629   13   80,000  
RD_hi 742  0   0   0    1  
RD_mid 742  0.255   0.436  0 1 
RD_lo 742  0.381   0.486  0 1 
      Bioelec. 742  0.096   0.294  0 1 
Biofuel 742  0.178   0.383  0 1 
Nuclear 742  0.480   0.500  0 1 
Solar 742  0.218   0.413  0 1 
CCS 742  0.028   0.166  0 1 
      academia 742  0.330   0.471  0 1 
private 742  0.395   0.489  0 1 
public 742  0.275   0.447  0 1 
EU 742  0.380   0.486  0 1 
Inperson 742  0.287   0.453  0 1 

 

  



 
 

 
 
 

Table III.  Factors affecting the uncertainty range, Y=ln(Urange). 
Y=ln(Urange) (1) (2) (3) (4) (5) (6) (7) 
 pooled pooled Solar Nuclear Bioelec. Biofuel CCS 
                
Inperson 0.288*** 0.287*** 0.317*** 0.455*** 0.0784 0.333* 0.627*** 
 [0.00010] [0.00075] [1.99e-06] [0.00326] [0.613] [0.0650] [0.00382] 
academia 0.110** 0.109** 0.0115 0.189** 0.00537 0.0357 0.00387 
 [0.0302] [0.0394] [0.890] [0.0131] [0.968] [0.816] [0.992] 
public 0.0626 0.0771* -0.0673 0.156*** 0.105 0.00809 -0.173 
 [0.130] [0.0838] [0.286] [0.00578] [0.402] [0.952] [0.646] 
EU -0.129*** -0.132*** -0.0878 -0.0374 -0.0993 -0.404**  
 [0.00170] [0.00416] [0.254] [0.416] [0.388] [0.0280]  
RD_hi 0.00271  0.0705*** -0.00858 0.0502** -0.138** 0.140 
 [0.871]  [0.00133] [0.641] [0.0334] [0.0244] [0.488] 
RD_mid 0.00790  0.0339* 0.000876 0.0463 -0.0931* 0.217 
 [0.623]  [0.0597] [0.957] [0.175] [0.0946] [0.441] 
ln(RD)  -3.390      
  [0.227]      
ln(RDsq)  1.690      
  [0.228]      
Nuclear 0.156** 0.172**      
 [0.0330] [0.0110]      
Bioelec. 0.170*** 0.193***      
 [0.00891] [0.00539]      
Biofuel 0.164** 0.166**      
 [0.0215] [0.0237]      
CCS 0.493*** 0.529***      
 [0.00023] [0.00013]      
        
Obs. 678 694 162 322 66 110 18 
# of experts by subtech 301 276 71 159 23 40 8 
# Clusters 160 146 39 66 23 24 8 
R2 overall 0.228 0.223 0.319 0.174 0.0395 0.128 0.378 
R2 within 0.000796 0.0348 0.166 0.00362 0.0606 0.154 0.186 
Clustered p-values in brackets      
*** p<0.01, ** p<0.05, * p<0.1       

  



 
 

 
 
 

Table IV. Factors affecting the “best” outcome, Y=ln(P10), for individual technologies. 

     
 Y=ln(P10) (1) (2) (3) (4) (5) 
VARIABLES Solar Nuclear Bioelectricity Biofuel CCS 
            
Inperson -0.0845*** -0.0202*** 0.00709 -0.0163*** -0.00359 
 [6.09e-07] [4.00e-06] [0.518] [0.000342] [0.617] 
academia 0.000778 -0.0216*** -0.00691 0.00995** -0.0102* 
 [0.959] [2.83e-07] [0.607] [0.0149] [0.0714] 
public 0.0194 -0.0118** -0.0290** 0.0137** -0.00131 
 [0.213] [0.0101] [0.0409] [0.0397] [0.871] 
EU -0.0121 0.00349 0.0437*** 0.0128***  
 [0.209] [0.385] [0.00103] [0.000357]  
RD_high -0.0316*** -0.00961*** -0.0169*** -0.00465* -0.00265 
 [1.63e-08] [0] [5.45e-06] [0.0944] [0.151] 
RD_mid -0.0140*** -0.00478*** -0.00808*** -0.00169 -0.00221 
 [0.000188] [0.000221] [0.000361] [0.508] [0.107] 
      
Observations 162 322 66 110 18 Number of experts, by subtech 71 159 23 40 8 
Nr Clusters 39 66 23 24 8 
R2 overall 0.419 0.284 0.477 0.240 0.356 
R2 within 0.371 0.372 0.476 0.119 0.365 
Clustered pvalues in brackets      
*** p<0.01, ** p<0.05, * p<0.1      

  



 
 

 
 
 

SUPPORTING INFORMATION 

Additional Supporting Information may be found in the online version of this article at the publisher’s 
website:  
Figure S-1. Individual elicitation results for solar PV (top-panel) and for nuclear power (bottom panel). 
Figure S-2. Individual elicitation results for biofuel non-energy cost (top-panel) and for bioelectricity non 
energy cost and additional CCS levelized capital cost (both on the bottom panel). 
Figure S-3. Distribution of experts’ Urange estimates for all observations. 
Table S-1.  Assignment of study-specific R&D levels to standardized R&D bins. 
Table S-2. Definitions of technologies and sub-technologies included in the elicitations. 
Table S-3. Definitions of variables used. 
Table S-4.  Estimates for models of Y = ln(P10), with continuous R&D. 
Table S-5.  Estimates of models for Y = ln(P50). 
Table S-6.  Estimates of models for Y = ln(P90). 
Table S-7. Correlation matrix of covariates. 

 
 
 
 
 
 
 
 
 
 


