384 research outputs found
Noise reduction in muon tomography for detecting high density objects
The muon tomography technique, based on multiple Coulomb scattering of cosmic
ray muons, has been proposed as a tool to detect the presence of high density
objects inside closed volumes. In this paper a new and innovative method is
presented to handle the density fluctuations (noise) of reconstructed images, a
well known problem of this technique. The effectiveness of our method is
evaluated using experimental data obtained with a muon tomography prototype
located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di
Fisica Nucleare (INFN). The results reported in this paper, obtained with real
cosmic ray data, show that with appropriate image filtering and muon momentum
classification, the muon tomography technique can detect high density
materials, such as lead, albeit surrounded by light or medium density material,
in short times. A comparison with algorithms published in literature is also
presented
Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam
The LHCb detector will be upgraded to make more efficient use of the
available luminosity at the LHC in Run III and extend its potential for
discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb
detector for particle identification. In this paper we describe the setup and
the results of tests in a charged particle beam, carried out to assess
prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT
photosensor to the readout and data acquisition system.Comment: 25 pages, 22 figure
Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster
Neutrino physics is nowadays receiving more and more attention as a possible
source of information for the long-standing problem of new physics beyond the
Standard Model. The recent measurement of the mixing angle in the
standard mixing oscillation scenario encourages us to pursue the still missing
results on leptonic CP violation and absolute neutrino masses. However,
puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE
Collaboration has been setup to undertake conclusive experiments to clarify the
muon-neutrino disappearance measurements at small , which will be able to
put severe constraints to models with more than the three-standard neutrinos,
or even to robustly measure the presence of a new kind of neutrino oscillation
for the first time. To this aim the use of the current FNAL-Booster neutrino
beam for a Short-Baseline experiment has been carefully evaluated. This
proposal refers to the use of magnetic spectrometers at two different sites,
Near and Far. Their positions have been extensively studied, together with the
possible performances of two OPERA-like spectrometers. The proposal is
constrained by availability of existing hardware and a time-schedule compatible
with the CERN project for a new more performant neutrino beam, which will
nicely extend the physics results achievable at the Booster. The possible FNAL
experiment will allow to clarify the current disappearance tension
with appearance and disappearance at the eV mass scale. Instead, a new
CERN neutrino beam would allow a further span in the parameter space together
with a refined control of systematics and, more relevant, the measurement of
the antineutrino sector, by upgrading the spectrometer with detectors currently
under R&D study.Comment: 76 pages, 52 figure
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
The analytical method algorithm for trigger primitives generation at the LHC drift tubes detector
The Compact Muon Solenoid (CMS) experiment prepares its Phase-2 upgrade for the high-luminosity era of the
LHC operation (HL-LHC). Due to the increase of occupancy, trigger latency and rates, the full electronics of the CMS Drift Tube (DT) chambers will need to be replaced. In the new design, the time bin for the digitization of the chamber signals will be of around 1 ns, and the totality of the signals will be forwarded asynchronously
to the service cavern at full resolution. The new backend system will be in charge of building the trigger
primitives of each chamber. These trigger primitives contain the information at chamber level about the muon
candidates position, direction, and collision time, and are used as input in the L1 CMS trigger. The added
functionalities will improve the robustness of the system against ageing. An algorithm based on analytical
solutions for reconstructing the DT trigger primitives, called Analytical Method, has been implemented both
as a software C++ emulator and in firmware. Its performance has been estimated using the software emulator
with simulated and real data samples, and through hardware implementation tests. Measured efficiencies are
96 to 98% for all qualities and time and spatial resolutions are close to the ultimate performance of the
DT chambers. A prototype chain of the HL-LHC electronics using the Analytical Method for trigger primitive
generation has been installed during Long Shutdown 2 of the LHC and operated in CMS cosmic data taking
campaigns in 2020 and 2021. Results from this validation step, the so-called Slice Test, are presented
Progress on development of the new FDIRC PID detector
International audienceWe present a progress status of a new concept of PID detector called FDIRC, intended to be used at the SuperB experiment, which requires π/K separation up to a few GeV/c. The new photon camera is made of the solid fused-silica optics with a volume 25× smaller and speed increased by a factor of 10 compared to the BaBar DIRC, and therefore will be much less sensitive to electromagnetic and neutron background
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
The network of photodetectors and diode lasers of the CMS Link alignment system
The central feature of the CMS Link alignment system is a network of Amorphous Silicon Position Detectors distributed throughout the muon spectrometer that are connected by multiple laser lines. The data collected during the years from 2008 to 2015 is presented confirming an outstanding performance of the photo sensors during more than seven years of operation. Details of the photo sensor readout of the laser signals are presented. The mechanical motions of the CMS detector are monitored using these photosensors and good agreement with distance sensors is obtained
LHCb Upgraded RICH 1 Engineering Design Review Report
During the Long Shutdown 2 of the LHC, the LHCb collaboration will replace the upstream
Ring Imaging Cherenkov detector (RICH 1). The magnetic shield of the current RICH 1
will be modified, new spherical and plane mirrors will be installed and a new gas enclosure
will be manufactured. New photon detectors (multianode photomultiplier tubes) will be
used and these, together with their readout electronics, require a new mechanical support
system. This document describes the new optical arrangement of RICH 1, its engineering
design, installation and alignment. A summary of the project schedule and institute
responsibilities is provided
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
- …