571 research outputs found
Forschung zum SGB II aus Sicht des IAB: Die neuen Forschungsaufgaben im Überblick
Das Inkrafttreten des SGB II am 1.1.2005 bringt umfangreiche Änderungen
des Arbeitsmarktgeschehens in Deutschland mit sich. Deren wissenschaftliche
Begleitung wird vom IAB als eine der wichtigsten kommenden
Herausforderungen an die Arbeitsmarkt- und Berufsforschung betrachtet.
Die folgende Darstellung strukturiert den Forschungsbedarf zum SGB II
aus Sicht des IAB.
Die hier skizzierten Forschungsansätze bedürfen weiterer Diskussion und
Spezifizierung sowie sicherlich auch der Ergänzung. Ausgeklammert werden
an dieser Stelle sich mit dem Optionsgesetz verbindende Zusatzfragestellungen.
Zudem ist nicht davon auszugehen, dass das IAB alle genannten
Themen bearbeiten wird: § 55 SGB II sieht explizit vor, dass Dritte
mit Teilen der Wirkungsforschung beauftragt werden können
Recommended from our members
Orbitofrontal cortex mediates pain inhibition by monetary reward
Pleasurable stimuli, including reward, inhibit pain, but the level of the neuraxis at which they do so and the cerebral
processes involved are unknown. Here, we characterized a brain circuitry mediating pain inhibition by reward. Twenty-four
healthy participants underwent functional magnetic resonance imaging while playing a wheel of fortune game with simultaneous thermal pain stimuli and monetary wins or losses. As expected, winning decreased pain perception compared to
losing. Inter-individual differences in pain modulation by monetary wins relative to losses correlated with activation in the
medial orbitofrontal cortex (mOFC). When pain and reward occured simultaneously, mOFCs functional connectivity
changed: the signal time course in the mOFC condition-dependent correlated negatively with the signal time courses in the
rostral anterior insula, anterior-dorsal cingulate cortex and primary somatosensory cortex, which might signify momentto-moment down-regulation of these regions by the mOFC. Monetary wins and losses did not change the magnitude of
pain-related activation, including in regions that code perceived pain intensity when nociceptive input varies and/or receive
direct nociceptive input. Pain inhibition by reward appears to involve brain regions not typically involved in nociceptive intensity coding but likely mediate changes in the significance and/or value of pain
Plasma ADMA associates with all-cause mortality in renal transplant recipients
Asymmetric dimethylarginine (ADMA) is a key endogenous inhibitor of endothelial NO synthase that affects endothelial function, blood pressure and vascular remodeling. Increased plasma levels of ADMA are associated with worse outcome from cardiovascular disease. Due to endothelial dysfunction before and after kidney transplantation, renal transplant recipients (RTR) are at high risk for the alleged deleterious effects of ADMA. We investigated the associations of ADMA levels with all-cause mortality and graft failure in RTR. Plasma ADMA levels were determined in 686 stable outpatient RTR (57 % male, 53 ± 13 years), with a functioning graft for ?1 year. Determinants of ADMA were evaluated with multivariate linear regression models. Associations between ADMA and mortality were assessed using multivariable Cox regression analyses. The strongest associations with plasma ADMA in the multivariable analyses were male gender, donor age, parathyroid hormone, NT-pro-BNP and use of calcium supplements. During a median follow-up of 3.1 [2.7-3.9] years, 79 (12 %) patients died and 45 (7 %) patients developed graft failure. ADMA was associated with increased all-cause mortality [HR 1.52 (95 % CI 1.26-1.83] per SD increase, P < 0.001], whereby associations remained upon adjustment for confounders. ADMA was associated with graft failure [HR 1.41 (1.08-1.83) per SD increase, P = 0.01]; however, upon addition of eGFR significance was lost. High levels of plasma ADMA are associated with increased mortality in RTR. Our findings connect disturbed NO metabolism with patient survival after kidney transplantation
Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?
Correlations in the signal observed via functional Magnetic Resonance Imaging
(fMRI), are expected to reveal the interactions in the underlying neural
populations through hemodynamic response. In particular, they highlight
distributed set of mutually correlated regions that correspond to brain
networks related to different cognitive functions. Yet graph-theoretical
studies of neural connections give a different picture: that of a highly
integrated system with small-world properties: local clustering but with short
pathways across the complete structure. We examine the conditional independence
properties of the fMRI signal, i.e. its Markov structure, to find realistic
assumptions on the connectivity structure that are required to explain the
observed functional connectivity. In particular we seek a decomposition of the
Markov structure into segregated functional networks using decomposable graphs:
a set of strongly-connected and partially overlapping cliques. We introduce a
new method to efficiently extract such cliques on a large, strongly-connected
graph. We compare methods learning different graph structures from functional
connectivity by testing the goodness of fit of the model they learn on new
data. We find that summarizing the structure as strongly-connected networks can
give a good description only for very large and overlapping networks. These
results highlight that Markov models are good tools to identify the structure
of brain connectivity from fMRI signals, but for this purpose they must reflect
the small-world properties of the underlying neural systems
Early occurrence of lung adenocarcinoma and breast cancer after radiotherapy of a chest wall sarcoma in a patient with a de novo germline mutation in TP53
We report a 26-year-old female patient who was diagnosed within 4years with chest sarcoma, lung adenocarcinoma, and breast cancer. While her family history was unremarkable, DNA sequencing of TP53 revealed a germline de novo non-sense mutation in exon 6 p.Arg213X. One year later, she further developed a contralateral ductal carcinoma in situ, and 18months later a jaw osteosarcoma. This case illustrates the therapeutic pitfalls in the care of a young cancer patient with TP53 de novo germline mutations and the complications related to her first-line therapy. Suggestion is made to use the less stringent Chompret criteria for germline TP53 mutation screening. Our observation underlines the possibly negative effect of radiotherapy in generating second tumors in patients with a TP53 mutation. We also present a review of six previously reported cases, comparing their cancer phenotypes with those generally produced by TP53 mutation
Shifting cancer care towards Multidisciplinarity: the cancer center certification program of the German cancer society
Background: Over the last decades numerous initiatives have been set up that aim at translating the best available medical knowledge and treatment into clinical practice. The inherent complexity of the programs and discrepancies in the terminology used make it difficult to appreciate each of them distinctly and compare their specific strengths and weaknesses. To allow comparison and stimulate dialogue between different programs, we in this paper provide an overview of the German Cancer Society certification program for multidisciplinary cancer centers that was established in 2003.
Main body: In the early 2000s the German Cancer Society assessed the available information on quality of cancer care in Germany and concluded that there was a definite need for a comprehensive, transparent and evidence-based system of quality assessment and control. This prompted the development and implementation of a voluntary cancer center certification program that was promoted by scientific societies, health-care providers, and patient advocacy groups and based on guidelines of the highest quality level (S3). The certification system structures the entire process of care from prevention to screening and multidisciplinary treatment of cancer and places multidisciplinary teams at the heart of this program. Within each network of providers, the quality of care is documented using tumor-specific quality indicators. The system started with breast cancer centers in 2003 and colorectal cancer centers in 2006. In 2017, certification systems are established for the majority of cancers. Here we describe the rationale behind the certification program, its history, the development of the certification requirements, the process of data collection, and the certification process as an example for the successful implementation of a voluntary but powerful system to ensure and improve quality of cancer care.
Conclusion: Since 2003, over 1 million patients had their primary tumors treated in a certified center. There are now over 1200 sites for different tumor entities in four countries that have been certified in accordance with the program and transparently report their results from multidisciplinary treatment for a substantial proportion of cancers. This led to a fundamental change in the structure of cancer care in Germany and neighboring countries within one decade
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Quantum reflection of helium atom beams from a microstructured grating
We observe high-resolution diffraction patterns of a thermal-energy
helium-atom beam reflected from a microstructured surface grating at grazing
incidence. The grating consists of 10-m-wide Cr strips patterned on a
quartz substrate and has a periodicity of 20 m. Fully-resolved diffraction
peaks up to the order are observed at grazing angles up to 20
mrad. With changes in de Broglie wavelength or grazing angle the relative
diffraction intensities show significant variations which shed light on the
nature of the atom-surface interaction potential. The observations are
explained in terms of quantum reflection at the long-range attractive
Casimir-van der Waals potential.Comment: 4 pages, 4 figure
- …
