96 research outputs found

    Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains

    Get PDF
    Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.Comment: Follow-up to arXiv:0706.3375. Journal submission 9 Jul 2007. Published 19 Dec 200

    Early warning signal for interior crises in excitable systems

    Full text link
    The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and non-bifurcation type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.Comment: 6 pages, 4 figure

    Inferring complex networks from time series of dynamical systems: Pitfalls, misinterpretations, and possible solutions

    Get PDF
    Understanding the dynamics of spatially extended systems represents a challenge in diverse scientific disciplines, ranging from physics and mathematics to the earth and climate sciences or the neurosciences. This challenge has stimulated the development of sophisticated data analysis approaches adopting concepts from network theory: systems are considered to be composed of subsystems (nodes) which interact with each other (represented by edges). In many studies, such complex networks of interactions have been derived from empirical time series for various spatially extended systems and have been repeatedly reported to possess the same, possibly desirable, properties (e.g. small-world characteristics and assortativity). In this thesis we study whether and how interaction networks are influenced by the analysis methodology, i.e. by the way how empirical data is acquired (the spatial and temporal sampling of the dynamics) and how nodes and edges are derived from multivariate time series. Our modeling and numerical studies are complemented by field data analyses of brain activities that unfold on various spatial and temporal scales. We demonstrate that indications of small-world characteristics and assortativity can already be expected due solely to the analysis methodology, irrespective of the actual interaction structure of the system. We develop and discuss strategies to distinguish the properties of interaction networks related to the dynamics from those spuriously induced by the analysis methodology. We show how these strategies can help to avoid misinterpretations when investigating the dynamics of spatially extended systems.Comment: PhD thesis, University of Bonn (Germany), published in 2012, 141 page

    Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data

    Get PDF
    7 pages, 4 figures Acknowledgement We are grateful to M. Riedl and G. Ansmann for fruitful discussions and critical comments on earlier versions of the manuscript. This work was supported by the Volkswagen Foundation (Grant Nos. 88461, 88462, 88463, 85390, 85391 and 85392).Peer reviewedPreprin

    Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

    Get PDF
    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erd\H{o}s-R\'{e}nyi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures - known for their complex spatial and temporal dynamics - we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis

    From brain to earth and climate systems: Small-world interaction networks or not?

    Full text link
    We consider recent reports on small-world topologies of interaction networks derived from the dynamics of spatially extended systems that are investigated in diverse scientific fields such as neurosciences, geophysics, or meteorology. With numerical simulations that mimic typical experimental situations we have identified an important constraint when characterizing such networks: indications of a small-world topology can be expected solely due to the spatial sampling of the system along with commonly used time series analysis based approaches to network characterization

    How important is the seizure onset zone for seizure dynamics?

    Get PDF
    Purpose: Research into epileptic networks has recently allowed deeper insights into the epileptic process. Here we investigated the importance of individual network nodes for seizure dynamics. Methods: We analysed intracranial electroencephalographic recordings of 86 focal seizures with different anatomical onset locations. With time-resolved correlation analyses, we derived a sequence of weighted epileptic networks spanning the pre-ictal, ictal, and post-ictal period, and each recording site represents a network node. We assessed node importance with commonly used centrality indices that take into account different network properties. Results: A high variability of temporal evolution of node importance was observed, both intra- and interindividually. Nevertheless, nodes near and far off the seizure onset zone (SOZ) were rated as most important for seizure dynamics more often (65% of cases) than nodes from within the SOZ (35% of cases). Conclusion: Our findings underline the high relevance of brain outside of the SOZ but within the large-scale epileptic network for seizure dynamics. Knowledge about these network constituents may elucidate targets for individualised therapeutic interventions that aim at preventing seizure generation and spread.Comment: In press (Seizure

    Automated scoring of pre-REM sleep in mice with deep learning

    Full text link
    Reliable automation of the labor-intensive manual task of scoring animal sleep can facilitate the analysis of long-term sleep studies. In recent years, deep-learning-based systems, which learn optimal features from the data, increased scoring accuracies for the classical sleep stages of Wake, REM, and Non-REM. Meanwhile, it has been recognized that the statistics of transitional stages such as pre-REM, found between Non-REM and REM, may hold additional insight into the physiology of sleep and are now under vivid investigation. We propose a classification system based on a simple neural network architecture that scores the classical stages as well as pre-REM sleep in mice. When restricted to the classical stages, the optimized network showed state-of-the-art classification performance with an out-of-sample F1 score of 0.95 in male C57BL/6J mice. When unrestricted, the network showed lower F1 scores on pre-REM (0.5) compared to the classical stages. The result is comparable to previous attempts to score transitional stages in other species such as transition sleep in rats or N1 sleep in humans. Nevertheless, we observed that the sequence of predictions including pre-REM typically transitioned from Non-REM to REM reflecting sleep dynamics observed by human scorers. Our findings provide further evidence for the difficulty of scoring transitional sleep stages, likely because such stages of sleep are under-represented in typical data sets or show large inter-scorer variability. We further provide our source code and an online platform to run predictions with our trained network.Comment: 14 pages, 5 figure
    • …
    corecore