72 research outputs found

    SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome.

    Get PDF
    International audienceBACKGROUND: Mutations in SCN5A are identified in approximately 20% to 30% of probands affected by Brugada syndrome (BrS). However, in familial studies, the relationship between SCN5A mutations and BrS remains poorly understood. The aim of this study was to investigate the association of SCN5A mutations and BrS in a group of large genotyped families. METHODS AND RESULTS: Families were included if at least 5 family members were carriers of the SCN5A mutation, which was identified in the proband. Thirteen large families composed of 115 mutation carriers were studied. The signature type I ECG was present in 54 mutation carriers (BrS-ECG+; 47%). In 5 families, we found 8 individuals affected by BrS but with a negative genotype (mutation-negative BrS-ECG+). Among these 8 mutation-negative BrS-ECG+ individuals, 3, belonging to 3 different families, had a spontaneous type I ECG, whereas 5 had a type I ECG only after the administration of sodium channel blockers. One of these 8 individuals had also experienced syncope. Mutation carriers had, on average, longer PR and QRS intervals than noncarriers, demonstrating that these mutations exerted functional effects. CONCLUSIONS: Our results suggest that SCN5A mutations are not directly causal to the occurrence of a BrS-ECG+ and that genetic background may play a powerful role in the pathophysiology of BrS. These findings add further complexity to concepts regarding the causes of BrS, and are consistent with the emerging notion that the pathophysiology of BrS includes various elements beyond mutant sodium channels

    Cadherin 2-Related Arrhythmogenic Cardiomyopathy Prevalence and Clinical Features

    Get PDF
    Background:Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM.Methods:A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed.Results:Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%).Conclusions:In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.</p

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry

    Get PDF
    AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator

    An International Multicenter Cohort Study on beta-Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    Background: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. β-Blockers decrease this risk, but studies comparing individual β-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of β-blocker in a large cohort of symptomatic children with CPVT.Methods: From 2 international registries of patients with CPVT, RYR2 variant–carrying symptomatic children (defined as syncope or sudden cardiac arrest before β-blocker initiation and age at start of β-blocker therapy &lt;18 years), treated with a β-blocker were included. Cox regression analyses with time-dependent covariates for β-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope.Results: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7–15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8–12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective β-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a β1-selective β-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial β-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for β1-selective compared with nonselective β-blockers (HR, 2.04 [95% CI, 1.31–3.17]; and HR, 1.99 [95% CI, 1.20–3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44–4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47–7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08–4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30–5.55]).Conclusions: β1-selective β-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective β-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred β-blocker for treating symptomatic children with CPVT.</p

    Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy.: MEPPC: a new SCN5A-related cardiac channelopathy

    Get PDF
    International audienceOBJECTIVES: The aim of this study was to describe a new familial cardiac phenotype and to elucidate the electrophysiological mechanism responsible for the disease. BACKGROUND: Mutations in several genes encoding ion channels, especially SCN5A, have emerged as the basis for a variety of inherited cardiac arrhythmias. METHODS: Three unrelated families comprising 21 individuals affected by multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by narrow junctional and rare sinus beats competing with numerous premature ventricular contractions with right and/or left bundle branch block patterns were identified. RESULTS: Dilated cardiomyopathy was identified in 6 patients, atrial arrhythmias were detected in 9 patients, and sudden death was reported in 5 individuals. Invasive electrophysiological studies demonstrated that premature ventricular complexes originated from the Purkinje tissue. Hydroquinidine treatment dramatically decreased the number of premature ventricular complexes. It normalized the contractile function in 2 patients. All the affected subjects carried the c.665G>A transition in the SCN5A gene. Patch-clamp studies of resulting p.Arg222Gln (R222Q) Nav1.5 revealed a net gain of function of the sodium channel, leading, in silico, to incomplete repolarization in Purkinje cells responsible for premature ventricular action potentials. In vitro and in silico studies recapitulated the normalization of the ventricular action potentials in the presence of quinidine. CONCLUSIONS: A new SCN5A-related cardiac syndrome, MEPPC, was identified. The SCN5A mutation leads to a gain of function of the sodium channel responsible for hyperexcitability of the fascicular-Purkinje system. The MEPPC syndrome is responsive to hydroquinidine

    Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome

    Get PDF
    BACKGROUND: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS: We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS: Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P&lt;5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P&lt;10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P&lt;10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P&lt;0.005). CONCLUSIONS: This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.</p

    Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls.

    Get PDF
    PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings
    corecore