52 research outputs found

    The prevalence of long COVID in people with diabetes mellitus–evidence from a UK cohort

    Get PDF
    Background: It was apparent from the early phase of the SARS-CoV-2 virus (COVID-19) pandemic that a multi-system syndrome can develop in the weeks following a COVID-19 infection, now referred to as Long COVID. Given that people living with diabetes are at increased risk of hospital admission/poor outcomes following COVID-19 infection we hypothesised that they may also be more susceptible to developing Long COVID. We describe here the prevalence of Long COVID in people living with diabetes when compared to matched controls in a Northwest UK population. Methods: This was a retrospective cohort study of people who had a recorded diagnosis of type 1 diabetes (T1D) or type 2 diabetes (T2D) who were alive on 1st January 2020 and who had a proven COVID-19 infection. We used electronic health record data from the Greater Manchester Care Record collected from 1st January 2020 to 16th September 2023, we determined the prevalence of Long COVID in people with T1D and T2D vs matched individuals without diabetes (non-DM). Findings: There were 3087 T1D individuals with 14,077 non-diabetes controls and 3087 T2D individuals with 14,077 non-diabetes controls and 29,700 T2D individuals vs 119,951 controls. For T1D, there was a lower proportion of Long COVID diagnosis and/or referral to a Long COVID service at 0.33% vs 0.48% for matched controls. The prevalence of Long COVID In T2D individuals was 0.53% vs 1:3 matched controls 0.54%. For T2D, there were differences by sex in the prevalence of Long COVID in comparison with 1:3 matched controls. For Long COVID between males with T2D and their matched controls, the prevalence was lower in matched controls at 0.46%.vs 0.54% (0.008). When considering the prevalence of LC between females with T2D and their matched controls, the prevalence was higher in matched controls at 0.61% vs 0.53% (0.007). The prevalence of Long COVID in males with T2D vs females was not different. T2D patients at older vs younger age were at reduced risk of developing Long COVID (OR 0.994 [95% CI) [0.989, 0.999]). For females there was a minor increase of risk (OR 1.179, 95% CI [1.002, 1.387]). Presence of a higher body mass index (BMI) was also associated an increased risk of developing Long COVID (OR 1.013, 95% CI [1.001, 1.026]). The estimated general population prevalence of Long COVID based on general practice coding (not self-reported) of this diagnosis was 0.5% of people with a prior acute COVID-19 diagnosis. Interpretation: Recorded Long COVID was more prevalent in men with T2D than in matched non-T2D controls with the opposite seen for T2D women, with recorded Long COVID rates being similar for T2D men and women. Younger age, female sex and higher BMI were all associated with a greater likelihood of developing Long COVID when taken as individual variables. There remains an imperative for continuing awareness of Long COVID as a differential diagnosis for multi-system symptomatic presentation in the context of a previous acute COVID-19 infection. Funding: The time of co-author RW was supported by the NIHR Applied Research Collaboration Greater Manchester ( NIHR200174) and the NIHR Manchester Biomedical Research Centre ( NIHR203308)

    Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19.

    Get PDF
    COVID-19 pathogenesis is associated with an exaggerated immune response. However, the specific cellular mediators and inflammatory components driving diverse clinical disease outcomes remain poorly understood. We undertook longitudinal immune profiling on both whole blood and peripheral blood mononuclear cells (PBMCs) of hospitalized patients during the peak of the COVID-19 pandemic in the UK. Here, we report key immune signatures present shortly after hospital admission that were associated with the severity of COVID-19. Immune signatures were related to shifts in neutrophil to T cell ratio, elevated serum IL-6, MCP-1 and IP-10, and most strikingly, modulation of CD14+ monocyte phenotype and function. Modified features of CD14+ monocytes included poor induction of the prostaglandin-producing enzyme, COX-2, as well as enhanced expression of the cell cycle marker Ki-67. Longitudinal analysis revealed reversion of some immune features back to the healthy median level in patients with a good eventual outcome. These findings identify previously unappreciated alterations in the innate immune compartment of COVID-19 patients and lend support to the idea that therapeutic strategies targeting release of myeloid cells from bone marrow should be considered in this disease. Moreover, they demonstrate that features of an exaggerated immune response are present early after hospital admission suggesting immune-modulating therapies would be most beneficial at early timepoints

    Alterations in T and B cell function persist in convalescent COVID-19 patients

    Get PDF
    BackgroundEmerging studies indicate that some COVID-19 patients suffer from persistent symptoms including breathlessness and chronic fatigue; however the long-term immune response in these patients presently remains ill-defined.MethodsHere we describe the phenotypic and functional characteristics of B and T cells in hospitalised COVID-19 patients during acute disease and at 3-6 months of convalescence.FindingsWe report that the alterations in B cell subsets observed in acute COVID-19 patients were largely recovered in convalescent patients. In contrast, T cells from convalescent patients displayed continued alterations with persistence of a cytotoxic programme evident in CD8+ T cells as well as elevated production of type-1 cytokines and IL-17. Interestingly, B cells from patients with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to toll-like receptor activation, skewed towards a pro-inflammatory phenotype. Whereas the frequency of IL-6+ B cells was restored in convalescent patients irrespective of clinical outcome, recovery of IL-10+ B cells was associated with resolution of lung pathology.ConclusionsOur data detail lymphocyte alterations in previously hospitalized COVID-19 patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent patients based on distinct lymphocyte phenotypes, with one subgroup associated with poorer clinical outcome. We propose that alterations in B and T cell function following hospitalisation with COVID-19 could impact longer term immunity and contribute to some persistent symptoms observed in convalescent COVID-19 patients

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Cohort Profile: Post-hospitalisation COVID-19 study (PHOSP-COVID)

    Get PDF
    PHOSP-COVID is a national UK multi-centre cohort study of patients who were hospitalised for COVID-19 and subsequently discharged.PHOSP-COVID was established to investigate the medium- and long-term sequelae of severe COVID-19 requiring hospitalisation, understand the underlying mechanisms of these sequelae, evaluate the medium- and long-term effects of COVID-19 treatments, and to serve as a platform to enable future studies, including clinical trials.Data collected covered a wide range of physical measures, biological samples, and Patient Reported Outcome Measures (PROMs).Participants could join the cohort either in Tier 1 only with remote data collection using hospital records, a PROMs app and postal saliva sample for DNA, or in Tier 2 where they were invited to attend two specific research visits for further data collection and biological research sampling. These research visits occurred at five (range 2-7) months and 12 (range 10-14) months post-discharge. Participants could also participate in specific nested studies (Tier 3) at selected sites.All participants were asked to consent to further follow-up for 25 years via linkage to their electronic healthcare records and to be re-contacted for further research.In total, 7935 participants were recruited from 83 UK sites: 5238 to Tier 1 and 2697 to Tier 2, between August 2020 and March 2022.Cohort data are held in a Trusted Research Environment and samples stored in a central biobank. Data and samples can be accessed upon request and subject to approvals

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore