95 research outputs found

    Experimental evidence that predator range expansion modifies alpine stream community structure

    Get PDF
    Climate change is projected to facilitate altitudinal range expansions of ‘lowland’ taxa, creating novel species interactions. However, how range shifts will alter biotic interactions and community structure in alpine streams is not well understood. In the Pyrénées, climate-induced physicochemical habitat change is hypothesized to facilitate the colonization of high-altitude streams by Perla grandis, a carnivorous stonefly. A field-based experiment was conducted in mesocosm channels beside a hillslope spring (2000 m asl) in the Taillon-Gabiétous catchment, French Pyrénées. The influence of P. grandis predation on community structure, feeding trait composition, body-size spectrum, and algal chlorophyll a concentration was examined. Gut contents were analyzed and used to identify consumed prey. Total invertebrate density was not significantly reduced by P. grandis, but Baetis spp. densities were depressed in the treatment channels through a combination of direct consumption and predator avoidance (emigration/drift). However, despite fewer grazers in the predator treatment channels, the magnitude of the trophic cascade effect on basal resources (measured as chlorophyll a density) was comparable between treatment and control channels. The results of this experiment suggest that size/species-specific predation, intraguild predation, and interference competition are the likely mechanisms that altered the body-size spectrum in treatment channels. In synergy with climate-driven physicochemical habitat change, the extinction risk of some range-restricted taxa (prey and other predators) could be increased where P. grandis colonization occurs. Hence, conservation efforts are required to ensure that additional anthropogenic stressors (e.g., nutrient enrichment, cattle trampling, hydropower development, ski runs, and tourism) are limited to minimize further pressures on these unique and sensitive habitats

    Extreme drought pushes stream invertebrate communities over functional thresholds

    Get PDF
    Functional traits are increasingly being used to predict extinction risks and range shifts under long‐term climate change scenarios, but have rarely been used to study vulnerability to extreme climatic events, such as supraseasonal droughts. In streams, drought intensification can cross thresholds of habitat loss, where marginal changes in environmental conditions trigger disproportionate biotic responses. However, these thresholds have been studied only from a structural perspective, and the existence of functional nonlinearity remains unknown. We explored trends in invertebrate community functional traits along a gradient of drought intensity, simulated over 18 months, using mesocosms analogous to lowland headwater streams. We modelled the responses of 16 traits based on a priori predictions of trait filtering by drought, and also examined the responses of trait profile groups (TPGs) identified via hierarchical cluster analysis. As responses to drought intensification were both linear and nonlinear, generalized additive models (GAMs) were chosen to model response curves, with the slopes of fitted splines used to detect functional thresholds during drought. Drought triggered significant responses in 12 (75%) of the a priori‐selected traits. Behavioural traits describing movement (dispersal, locomotion) and diet were sensitive to moderate‐intensity drought, as channels fragmented into isolated pools. By comparison, morphological and physiological traits showed little response until surface water was lost, at which point we observed sudden shifts in body size, respiration mode and thermal tolerance. Responses varied widely among TPGs, ranging from population collapses of non‐aerial dispersers as channels fragmented to irruptions of small, eurythermic dietary generalists upon extreme dewatering. Our study demonstrates for the first time that relatively small changes in drought intensity can trigger disproportionately large functional shifts in stream communities, suggesting that traits‐based approaches could be particularly useful for diagnosing catastrophic ecological responses to global change

    Green Synthesis of Zinc Oxide Nanoparticles from Althaea officinalis Flower Extract Coated with Chitosan for Potential Healing Effects on Diabetic Wounds by Inhibiting TNF-α and IL-6/IL-1β Signaling Pathways

    Get PDF
    Sammar Fathy Elhabal,1 Nashwa Abdelaal,2 Saeed Abdul Kareem Saeed Al-Zuhairy,3 Mohamed Fathi Mohamed Elrefai,4,5 Ahmed Mohsen Elsaid Hamdan,6 Mohamed Mansour Khalifa,7 Sandra Hababeh,8 Mohammad Ahmad Khasawneh,9 Gehad M Khamis,10 Jakline Nelson,11 Passant M Mohie,10 Rania A Gad,12 Amira Rizk,13 Soad L Kabil,14 Mohamed Kandeel El-Ashery,15,16 Bhaskara R Jasti,17 Nahla A Elzohairy,18,19 Tayseer Elnawawy,20 Fatma E Hassan,21,22 Mohamed A El- Nabarawi23 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt; 2Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; 3Department of Pharmacy, Kut University College, Kut, Wasit, Iraq; 4Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan; 5Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; 6Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; 7Department of Human Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt; 8Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 9Department of Chemistry, College of Science U.A.E. University, Al-Ain, United Arab Emirates; 10Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt; 11Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; 12Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; 13Food Science and Technology Department, Faculty of Agricultural, Tanta University, Tanta, Egypt; 14Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; 15Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 16Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt; 17Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA; 18Air Force Specialized Hospital, Cairo, Egypt; 19Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt; 20Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt; 21Medical Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt; 22General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah, Saudi Arabia; 23Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, EgyptCorrespondence: Sammar Fathy Elhabal, Email [email protected]; [email protected]; Mohamed A El- Nabarawi, Email [email protected]: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel.Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1β, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models.Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing. Keywords: wound healing, antimicrobial, antioxidant, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, chitosan, wound concentration, wound incisio

    Genetic Structure and Inferences on Potential Source Areas for Bactrocera dorsalis (Hendel) Based on Mitochondrial and Microsatellite Markers

    Get PDF
    Bactrocera dorsalis (Diptera: Tephritidae) is mainly distributed in tropical and subtropical Asia and in the Pacific region. Despite its economic importance, very few studies have addressed the question of the wide genetic structure and potential source area of this species. This pilot study attempts to infer the native region of this pest and its colonization pathways in Asia. Combining mitochondrial and microsatellite markers, we evaluated the level of genetic diversity, genetic structure, and the gene flow among fly populations collected across Southeast Asia and China. A complex and significant genetic structure corresponding to the geographic pattern was found with both types of molecular markers. However, the genetic structure found was rather weak in both cases, and no pattern of isolation by distance was identified. Multiple long-distance dispersal events and miscellaneous host selection by this species may explain the results. These complex patterns may have been influenced by human-mediated transportation of the pest from one area to another and the complex topography of the study region. For both mitochondrial and microsatellite data, no signs of bottleneck or founder events could be identified. Nonetheless, maximal genetic diversity was observed in Myanmar, Vietnam and Guangdong (China) and asymmetric migration patterns were found. These results provide indirect evidence that the tropical regions of Southeast Asia and southern coast of China may be considered as the native range of the species and the population expansion is northward. Yunnan (China) is a contact zone that has been colonized from different sources. Regions along the southern coast of Vietnam and China probably served to colonize mainly the southern region of China. Southern coastal regions of China may also have colonized central parts of China and of central Yunnan

    Invasion Genetics of the Western Flower Thrips in China: Evidence for Genetic Bottleneck, Hybridization and Bridgehead Effect

    Get PDF
    The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites, eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global FST = 0.043, P<0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations (Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis should focus on preventing it from spreading from the putative source populations to other parts of China

    Persistent or transient human β cell dysfunction induced by metabolic stress: specific signatures and shared gene expression with type 2 diabetes

    Get PDF
    Pancreatic β cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human β cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying β cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible β cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human β cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved β cell-targeted therapeutic strategies

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe
    corecore