249 research outputs found

    Multi-line Stokes inversion for prominence magnetic-field diagnostics

    Full text link
    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D_3) and 1083.0 nm in prominences (90-deg scattering). We created datasets of synthetic Stokes profiles for the case of quiescent prominences (B<200 G), assuming a conservative value of 10^-3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.Comment: 14 pages, 5 figures, 1 tabl

    Spectral type dependent rotational braking and strong magnetic flux in three components of the late-M multiple system LHS 1070

    Full text link
    We show individual high resolution spectra of components A, B, and C of the nearby late-M type multiple system LHS 1070. Component A is a mid-M star, B and C are known to have masses at the threshold to brown dwarfs. From our spectra we measure rotation velocities and the mean magnetic field for all three components individually. We find magnetic flux on the order of several kilo-Gauss in all components. The rotation velocities of the two late-M objects B and C are similar (vsini = 16km/s), the earlier A component is spinning only at about half that rate. This suggests weakening of net rotational braking at late-M spectral type, and that the lack of slowly rotating late-M and L dwarfs is real. Furthermore, we found that magnetic flux in the B component is about twice as strong as in component C at similar rotation rate. This indicates that rotational braking is not proportional to magnetic field strength in fully convective objects, and that a different field topology is the reason for the weak braking in low mass objects.Comment: accepted for publication as A&A Lette

    Identification of strong photometric activity in the components of LHS 1070

    Full text link
    Activity in low-mass stars is an important ingredient in the evolution of such objects. Fundamental physical properties such as age, rotation, magnetic field are correlated with activity. Aims: We show that two components of the low-mass triple system LHS 1070 exhibit strong flaring activity. We identify the flaring components and obtained an improved astrometric solution for the LHS 1070 A/(B+C) system. Methods: Time-series CCD observations were used to monitor LHS 1070 in the B and I_C bands. H-band data were used to obtain accurate astrometry for the LHS 1070 A/(B+C) system. Results: We have found that two components of the triple system LHS 1070 exhibit photometric activity. We identified that components A and B are the flaring objects. We estimate the total energy, ~2.0 x 10^{33} ergs, and the magnetic field strength, ~5.5 kG, of the flare observed in LHS 1070 B. This event is the largest amplitude, \Delta B > 8.2 mag, ever observed in a flare star.Comment: 5 pages, 5 figures, accepted for publication in A&

    X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri

    Get PDF
    Using the XMM-Newton X-ray observatory to monitor the nearest star to the Sun, Proxima Centauri, we recorded the weakest X-ray flares on a magnetically active star ever observed. Correlated X-ray and optical variability provide strong support for coronal energy and mass supply by a nearly continuous sequence of rapid explosive energy releases. Variable emission line fluxes were observed in the He-like triplets of OVII and NeIX during a giant flare. They give direct X-ray evidence for density variations, implying densities between 2x10^{10} - 4x10^{11} cm^{-3} and providing estimates of the mass and the volume of the line-emitting plasma. We discuss the data in the context of the chromospheric evaporation scenario.Comment: 10 pages, 2 figures, accepted by The Astrophysical Journal, Letters; improved calculations of radiative loss of cool plasma (toward end of paper

    New ephemeris of the ADC source 2A 1822-371: a stable orbital-period derivative over 30 years

    Get PDF
    We report on a timing of the eclipse arrival times of the low mass X-ray binary and X-ray pulsar 2A 1822-371 performed using all available observations of the Proportional Counter Array on board the Rossi X-ray Timing Explorer, XMM-Newton pn, and Chandra. These observations span the years from 1996 to 2008. Combining these eclipse arrival time measurements with those already available covering the period from 1977 to 1996, we obtain an orbital solution valid for more than thirty years. The time delays calculated with respect to a constant orbital period model show a clear parabolic trend, implying that the orbital period in this source constantly increases with time at a rate P˙orb=1.50(7)×1010\dot P_orb = 1.50(7) \times 10^{-10} s/s. This is 3 orders of magnitude larger than what is expected from conservative mass transfer driven by magnetic braking and gravitational radiation. From the conservation of the angular momentum of the system we find that to explain the high and positive value of the orbital period derivative the mass transfer rate must not be less than 3 times the Eddington limit for a neutron star, suggesting that the mass transfer has to be partially non-conservative. With the hypothesis that the neutron star accretes at the Eddington limit we find a consistent solution in which at least 70% of the transferred mass has to be expelled from the system.Comment: Published by A&

    Mode identification in rapidly rotating stars

    Get PDF
    Context: Recent calculations of pulsation modes in rapidly rotating polytropic models and models based on the Self-Consistent Field method have shown that the frequency spectrum of low degree pulsation modes can be described by an empirical formula similar to Tassoul's asymptotic formula, provided that the underlying rotation profile is not too differential. Aims: Given the simplicity of this asymptotic formula, we investigate whether it can provide a means by which to identify pulsation modes in rapidly rotating stars. Methods: We develop a new mode identification scheme which consists in scanning a multidimensional parameter space for the formula coefficients which yield the best-fitting asymptotic spectra. This mode identification scheme is then tested on artificial spectra based on the asymptotic formula, on random frequencies and on spectra based on full numerical eigenmode calculations for which the mode identification is known beforehand. We also investigate the effects of adding random frequencies to mimic the effects of chaotic modes which are also expected to show up in such stars. Results: In the absence of chaotic modes, it is possible to accurately find a correct mode identification for most of the observed frequencies provided these frequencies are sufficiently close to their asymptotic values. The addition of random frequencies can very quickly become problematic and hinder correct mode identification. Modifying the mode identification scheme to reject the worst fitting modes can bring some improvement but the results still remain poorer than in the case without chaotic modes

    A magnetic field evolution scenario for brown dwarfs and giant planets

    Full text link
    Very little is known about magnetic fields of extrasolar planets and brown dwarfs. We use the energy flux scaling law presented by Christensen et al. (2009) to calculate the evolution of average magnetic fields in extrasolar planets and brown dwarfs under the assumption of fast rotation, which is probably the case for most of them. We find that massive brown dwarfs of about 70 M_Jup can have fields of a few kilo-Gauss during the first few hundred Million years. These fields can grow by a factor of two before they weaken after deuterium burning has stopped. Brown dwarfs with weak deuterium burning and extrasolar giant planets start with magnetic fields between ~100G and ~1kG at the age of a few Myr, depending on their mass. Their magnetic field weakens steadily until after 10Gyr it has shrunk by about a factor of 10. We use observed X-ray luminosities to estimate the age of the known extrasolar giant planets that are more massive than 0.3M_Jup and closer than 20pc. Taking into account the age estimate, and assuming sun-like wind-properties and radio emission processes similar to those at Jupiter, we calculate their radio flux and its frequency. The highest radio flux we predict comes out as 700mJy at a frequency around 150MHz for τ\tauBoob, but the flux is below 60mJy for the rest. Most planets are expected to emit radiation between a few Mhz and up to 100MHz, well above the ionospheric cutoff frequency.Comment: 7 pages, accepted by A&

    Magnetically warped discs in close binaries

    Full text link
    We demonstrate that measurable vertical structure can be excited in the accretion disc of a close binary system by a dipolar magnetic field centred on the secondary star. We present the first high resolution hydrodynamic simulations to show the initial development of a uniform warp in a tidally truncated accretion disc. The warp precesses retrogradely with respect to the inertial frame. The amplitude depends on the phase of the warp with respect to the binary frame. A warped disc is the best available explanation for negative superhumps.Comment: 11 pages, 10 figures, MNRAS accepte

    Rotation, magnetism, and metallicity of M dwarf systems

    Full text link
    Close M-dwarf binaries and higher multiples allow the investigation of rotational evolution and mean magnetic flux unbiased from scatter in inclination angle and age since the orientation of the spin axis of the components is most likely parallel and the individual systems are coeval. Systems composed of an early (M0.0 -- M4.0) and a late (M4.0 -- M8.0) type component offer the possibility to study differences in rotation and magnetism between partially and fully convective stars. We have selected 10 of the closest dM systems to determine the rotation velocities and the mean magnetic field strengths based on spectroscopic analysis of FeH lines of Wing-Ford transitions at 1 μ\mum observed with VLT/CRIRES. We also studied the quality of our spectroscopic model regarding atmospheric parameters including metallicity. A modified version of the Molecular Zeeman Library (MZL) was used to compute Land\'e g-factors for FeH lines. Magnetic spectral synthesis was performed with the Synmast code. We confirmed previously reported findings that less massive M-dwarfs are braked less effectively than objects of earlier types. Strong surface magnetic fields were detected in primaries of four systems (GJ 852, GJ 234, LP 717-36, GJ 3322), and in the secondary of the triple system GJ 852. We also confirm strong 2 kG magnetic field in the primary of the triple system GJ 2005. No fields could be accurately determined in rapidly rotating stars with \vsini>10 \kms. For slow and moderately rotating stars we find the surface magnetic field strength to increase with the rotational velocity \vsini which is consistent with other results from studying field stars.Comment: Accepted by MNRAS, 10 pages, 4 figures, 4 table

    Getting ahead of Flash Drought: From Early Warning to Early Action

    Get PDF
    Flash droughts, characterized by their unusually rapid intensification, have garnered increasing attention within the weather, climate, agriculture, and ecological communities in recent years due to their large environmental and socioeconomic impacts. Because flash droughts intensify quickly, they require different early warning capabilities and management approaches than are typically used for slower-developing “conventional” droughts. In this essay, we describe an integrated research-and-applications agenda that emphasizes the need to reconceptualize our understanding of flash drought within existing drought early warning systems by focusing on opportunities to improve monitoring and prediction. We illustrate the need for engagement among physical scientists, social scientists, operational monitoring and forecast centers, practitioners, and policy-makers to inform how they view, monitor, predict, plan for, and respond to flash drought. We discuss five related topics that together constitute the pillars of a robust flash drought early warning system, including the development of 1) a physically based identification framework, 2) comprehensive drought monitoring capabilities, and 3) improved prediction over various time scales that together 4) aid impact assessments and 5) guide decision-making and policy. We provide specific recommendations to illustrate how this fivefold approach could be used to enhance decision-making capabilities of practitioners, develop new areas of research, and provide guidance to policy-makers attempting to account for flash drought in drought preparedness and response plans
    corecore