228 research outputs found

    The magnetic field of solar prominences

    Full text link
    In his famous monographs, Einar Tandberg-Hanssen writes that "the single, physically most important parameter to study in prominences may be the magnetic field. Shapes, motions, and in fact the very existence of prominences depend on the nature of the magnetic field threading the prominence plasma". Hereafter we sumarize recent contributions and advances in our knowledge about the magnetic field of solar prominences. It mostly relies on high resolution and high sensitivity spectropolarimetry made both in the visible and in the near infrared.Comment: 6 pages, 3 figures, Procs. of the 2008 meeting of the French Society of Astronomy and Astrophysics (SF2A

    2D radiative modelling of He I spectral lines formed in solar prominences

    Full text link
    We present preliminary results of 2D radiative modelling of He I lines in solar prominences, using a new numerical code developed by us (Leger, Chevallier and Paletou 2007). It treats self-consistently the radiation transfer and the non-LTE statistical equilibrium of H and, in a second stage, the one of He using a detailed atomic model. Preliminary comparisons with new visible plus near-infrared observations made at high spectral resolution with THeMIS are very satisfactory.Comment: 4 pages, 2 figures (to appear in the Procs. of Solar Polarization Workshop #5, eds. Berdyugina, Nagendra and Ramelli), revised +2 citations, better figure

    Freeware solutions for spectropolarimetric data reduction

    Full text link
    Most of the solar physicists use very expensive software for data reduction and visualization. We present hereafter a reliable freeware solution based on the Python language. This is made possible by the association of the latter with a small set of additional libraries developed in the scientific community. It provides then a very powerful and economical alternative to other interactive data languages. Although it can also be used for any kind of post-processing of data, we demonstrate the capabities of such a set of freeware tools using THeMIS observations of the second solar spectrum.Comment: 4 pages, 2 figures (to appear in the Procs. of Solar Polarization Workshop #5, eds. Berdyugina, Nagendra and Ramelli

    2D non-LTE radiative modelling of He I spectral lines formed in solar prominences

    Full text link
    The diagnosis of new high-resolution spectropolarimetric observations of solar prominences made in the visible and near-infrared mainly, requires a radiative modelling taking into account for both multi-dimensional geometry and complex atomic models. Hereafter we contribute to the improvement of the diagnosis based on the observation of He I multiplets, by considering 2D non-LTE unpolarized radiation transfer, and taking also into account the atomic fine structure of helium. It is an improvement and a direct application of the multi-grid Gauss-Seidel/SOR iterative scheme in 2D cartesian geometry developed by us. It allows us to compute realistic emergent intensity profiles for the He I 10830 A and D3 multiplets, which can be directly compared to the simultaneous and high-resolution observations made at THeMIS. A preliminary 2D multi-thread modelling is also discussed.Comment: 6 pages, 9 figures, A&

    Numerical radiative transfer with state-of-the-art iterative methods made easy

    Full text link
    This article presents an on-line tool (rttools.irap.omp.eu) and its accompanying software ressources for the numerical solution of basic radiation transfer out of local thermodynamic equilibrium (LTE). State-of-the-art stationary iterative methods such as Accelerated Λ\Lambda-Iteration and Gauss-Seidel schemes, using a short characteristics-based formal solver are used. We also comment on typical numerical experiments associated to the basic non-LTE radiation problem. These ressources are intended for the largest use and benefit, in support to more classical radiation transfer lectures usually given at the Master level.Comment: 8 pages, 5 figures, accepted for Eur. J. Phys. - see also (and use!) http://rttools.irap.omp.e

    Fast 2D non-LTE radiative modelling of prominences I. Numerical methods and benchmark results

    Full text link
    New high-resolution spectropolarimetric observations of solar prominences require improved radiative modelling capabilities in order to take into account both multi-dimensional - at least 2D - geometry and complex atomic models. This makes necessary the use of very fast numerical schemes for the resolution of 2D non-LTE radiative transfer problems considering freestanding and illuminated slabs. The implementation of Gauss-Seidel and successive over-relaxation iterative schemes in 2D, together with a multi-grid algorithm, is thoroughly described in the frame of the short characteristics method for the computation of the formal solution of the radiative transfer equation in cartesian geometry. We propose a new test for multidimensional radiative transfer codes and we also provide original benchmark results for simple 2D multilevel atom cases which should be helpful for the further development of such radiative transfer codes, in general.Comment: 10 pages, 8 figures, accepted to A&

    Multi-line Stokes inversion for prominence magnetic-field diagnostics

    Full text link
    We present test results on the simultaneous inversion of the Stokes profiles of the He I lines at 587.6 nm (D_3) and 1083.0 nm in prominences (90-deg scattering). We created datasets of synthetic Stokes profiles for the case of quiescent prominences (B<200 G), assuming a conservative value of 10^-3 of the peak intensity for the polarimetric sensitivity of the simulated observations. In this work, we focus on the error analysis for the inference of the magnetic field vector, under the usual assumption that the prominence can be assimilated to a slab of finite optical thickness with uniform magnetic and thermodynamic properties. We find that the simultaneous inversion of the two lines significantly reduces the errors on the inference of the magnetic field vector, with respect to the case of single-line inversion. These results provide a solid justification for current and future instrumental efforts with multi-line capabilities for the observations of solar prominences and filaments.Comment: 14 pages, 5 figures, 1 tabl
    • …
    corecore