2,950 research outputs found
The ATLAS detector at the LHC
The biggest existing multi-purpose particle detector, ATLAS, is now built and running at CERN. Details of the different subdetectors were presented, together with expected performance aspects. The performance achievements obtained during the two real data-taking periods of ATLAS, cosmics rays and single beam runs of the LHC in fall 2008, were outlined
Near-Infrared Kinetic Spectroscopy of the HO_2 and C_2H_5O_2 Self-Reactions and Cross Reactions
The self-reactions and cross reactions of the peroxy radicals HO_2 and C_2H_5O_2 and HO_2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO_2, and UV absorption monitored HO_2 and C_2H_5O_2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221−296 K. The Arrhenius expression determined for the cross reaction, k_2(T) = (6.01^(+1.95)_(−1.47)) × 10^(−13) exp((638 ± 73)/T) cm^3 molecules^(−1) s^(−1) is in agreement with other work from the literature. The measurements of the HO_2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C_2H_5O_2 self-reaction is complicated by secondary production of HO_2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO_2. The Arrhenius expression for the self-reaction rate constant is k_3(T) = (1.29^(+0.34)_(−0.27)) × 10^(−13)exp((−23 ± 61)/T) cm^3 molecules^(−1) s^(−1), and the branching fraction value is α = 0.28 ± 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO_2 self-reactions are required
Experimental Line Parameters of the b^(1)Σ^(+)_g ← X^(3)Σ^(-)_g Band of Oxygen Isotopologues at 760 nm Using Frequency-Stabilized Cavity Ring-Down Spectroscopy
Positions, intensities, self-broadened widths, and collisional narrowing coefficients of the oxygen isotopologues ^(16)O^(18)O, ^(16)O^(17)O, ^(17)O^(18)O, and ^(18)O^(18)O have been measured for the b^(1)Σg + ← X^(3)Σg − (0,0) band using frequency-stabilized cavity ring-down spectroscopy. Line positions of 156 P-branch transitions were referenced against the hyperfine components of the ^(39)K D_1 (4s ^(2)S_(1/2) → 4p ^(2)P_(1/2)) and D_2 (4s ^(2)S_(1/2) → 4p ^(2)P_(3/2)) transitions, yielding precisions of ~0.00005 cm^(−1) and absolute accuracies of 0.00030 cm^(−1) or better. New excited b^(1)Σg + state molecular constants are reported for all four isotopologues. The measured line intensities of the ^(16)O^(18)O isotopologue are within 2% of the values currently assumed in molecular databases. However, the line intensities of the ^(16)O^(17)O isotopologue show a systematic, J-dependent offset between our results and the databases. Self-broadening half-widths for the various isotopologues are internally consistent to within 2%. This is the first comprehensive study of the line intensities and shapes for the ^(17)O^(18)O or ^(18)O_2 isotopologues of the b^(1)Σg + ← X^(3)Σg − (0,0) band of O_2. The ^(16)O_2, ^(16)O^(18)O, and ^(16)O^(17)O line parameters for the oxygen A-band have been extensively revised in the HITRAN 2008 database using results from the present study
Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility
A quality assurance and performance qualification laboratory was built at
McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC)
muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer
upgrade. The facility uses cosmic rays as a muon source to ionise the quenching
gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A
gas system was developed and characterised for this purpose, with a simple and
efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC).
The gas system was tested to provide the desired 45 vol% pentane concentration.
For continuous operations, a state-machine system was implemented with alerting
and remote monitoring features to run all cosmic-ray data-acquisition
associated slow-control systems, such as high/low voltage, gas system and
environmental monitoring, in a safe and continuous mode, even in the absence of
an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal
of Instrumentation (JINST), including corrected Fig. 8b
Temperature Behaviour and Uniformity of SCT Barrels during Assembly and Reception Testing
This note presents temperature studies of the barrel SemiConductor Tracker (SCT) modules during the barrel assembly at Oxford University and the barrel reception at CERN. At Oxford, warm and/or cold tests have been performed on each of the four SCT barrels comprising a total of 2112 silicon strip modules. After macro-assembly, the barrels were shipped to CERN where reception tests took place before the inner detector integration phase. We present the temperature uniformity of the different barrels under changing operating conditions. Estimates of the errors contributing to the temperature measurements will be discussed. We introduce corrections for several systematic effects. We finally identify modules operating at higher temperatures and discuss possible reasons for their deteriorated thermal performance
Slow-light enhanced light-matter interactions with applications to gas sensing
Optical gas detection in microsystems is limited by the short micron scale
optical path length available. Recently, the concept of slow-light enhanced
absorption has been proposed as a route to compensate for the short path length
in miniaturized absorption cells. We extend the previous perturbation theory to
the case of a Bragg stack infiltrated by a spectrally strongly dispersive gas
with a narrow and distinct absorption peak. We show that considerable signal
enhancement is possible. As an example, we consider a Bragg stack consisting of
PMMA infiltrated by O2. Here, the required optical path length for visible to
near-infrared detection (~760 nm) can be reduced by at least a factor of 10^2,
making a path length of 1 mm feasible. By using this technique, optical gas
detection can potentially be made possible in microsystems
Lujan v. National Wildlife Federation: The Supreme Court Tightens the Reins on Standing for Environmental Groups
Lujan v. National Wildlife Federation: The Supreme Court Tightens the Reins on Standing for Environmental Groups
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
