research

Experimental Line Parameters of the b^(1)Σ^(+)_g ← X^(3)Σ^(-)_g Band of Oxygen Isotopologues at 760 nm Using Frequency-Stabilized Cavity Ring-Down Spectroscopy

Abstract

Positions, intensities, self-broadened widths, and collisional narrowing coefficients of the oxygen isotopologues ^(16)O^(18)O, ^(16)O^(17)O, ^(17)O^(18)O, and ^(18)O^(18)O have been measured for the b^(1)Σg + ← X^(3)Σg − (0,0) band using frequency-stabilized cavity ring-down spectroscopy. Line positions of 156 P-branch transitions were referenced against the hyperfine components of the ^(39)K D_1 (4s ^(2)S_(1/2) → 4p ^(2)P_(1/2)) and D_2 (4s ^(2)S_(1/2) → 4p ^(2)P_(3/2)) transitions, yielding precisions of ~0.00005 cm^(−1) and absolute accuracies of 0.00030 cm^(−1) or better. New excited b^(1)Σg + state molecular constants are reported for all four isotopologues. The measured line intensities of the ^(16)O^(18)O isotopologue are within 2% of the values currently assumed in molecular databases. However, the line intensities of the ^(16)O^(17)O isotopologue show a systematic, J-dependent offset between our results and the databases. Self-broadening half-widths for the various isotopologues are internally consistent to within 2%. This is the first comprehensive study of the line intensities and shapes for the ^(17)O^(18)O or ^(18)O_2 isotopologues of the b^(1)Σg + ← X^(3)Σg − (0,0) band of O_2. The ^(16)O_2, ^(16)O^(18)O, and ^(16)O^(17)O line parameters for the oxygen A-band have been extensively revised in the HITRAN 2008 database using results from the present study

    Similar works