127 research outputs found

    On the computation of moist-air specific thermal enthalpy

    Full text link
    The specific thermal enthalpy of a moist-air parcel is defined analytically following a method in which specific moist entropy is derived from the Third Law of thermodynamics. Specific thermal enthalpy is computed by integrating specific heat content with respect to absolute temperature and including the impacts of various latent heats (i.e., solid condensation, sublimation, melting, and evaporation). It is assumed that thermal enthalpies can be set to zero at 00 K for the solid form of the main chemically inactive components of the atmosphere (solid-α\alpha oxygen and nitrogen, hexagonal ice). The moist thermal enthalpy is compared to already existing formulations of moist static energy (MSE). It is shown that the differences between thermal enthalpy and the thermal part of MSE may be quite large. This prevents the use of MSE to evaluate the enthalpy budget of a moist atmosphere accurately, a situation that is particularly true when dry-air and cloud parcels mix because of entrainment/detrainment processes along the edges of cloud. Other differences are observed when MSE or moist-air thermal enthalpy is plotted on a psychrometric diagram or when vertical profiles of surface deficit are plotted.Comment: Paper accepted for publication (January 2014) in the Quarterly Journal of the Royal Meteorological Society (39 pages, 12 Figures, 7 Tables

    Representing 3-D cloud radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation

    Get PDF
    Estimating the impact of radiation transport through cloud sides on the global energy budget is hampered by the lack of a fast radiation scheme suitable for use in global atmospheric models that can represent these effects in both the shortwave and longwave. This two-part paper describes the development of such a scheme, which we refer to as the Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS). The principle of the method is to add extra terms to the two-stream equations to represent lateral transport between clear and cloudy regions, which vary in proportion to the length of cloud edge as a function of height. The present paper describes a robust and accurate method for solving the coupled system of equations in both the shortwave and longwave in terms of matrix exponentials. This solver has been coupled to a correlated-k model for gas absorption. We then confirm the accuracy of SPARTACUS by performing broadband comparisons with fully 3-D radiation calculations by the Monte Carlo model “MYSTIC” for a cumulus cloud field, examining particularly the percentage change in cloud radiative effect (CRE) when 3-D effects are introduced. In the shortwave, SPARTACUS correctly captures this change to CRE, which varies with solar zenith angle between −25% and +120%. In the longwave, SPARTACUS captures well the increase in radiative cooling of the cloud, although it is only able to correctly simulate the 30% increase in surface CRE (around 4 W m−2) if an approximate correction is made for cloud clustering

    Crystalline silicate dust around evolved stars I. The sample stars

    Get PDF
    This is the first paper in a series of three where we present the first comprehensive inventory of solid state emission bands observed in a sample of 17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data were taken with the Short and Long Wavelength Spectrographs on board of the Infrared Space Observatory (ISO) and cover the 2.4 to 195 micron wavelength range. The spectra show the presence of broad 10 and 18 micron bands that can be attributed to amorphous silicates. In addition, at least 49 narrow bands are found whose position and width indicate they can be attributed to crystalline silicates. Almost all of these bands were not known before ISO. We have measured the peak positions, widths and strengths of the individual, continuum subtracted bands. Based on these measurements, we were able to order the spectra in sequence of decreasing crystalline silicate band strength. We found that the strength of the emission bands correlates with the geometry of the circumstellar shell, as derived from direct imaging or inferred from the shape of the spectral energy distribution. This naturally divides the sample into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). All stars with the 33.6 micron forsterite band stronger than 20 percent over continuum are disk sources. We define spectral regions (called complexes) where a concentration of emission bands is evident, at 10, 18, 23, 28, 33, 40 and 60 micron. We derive average shapes for these complexes and compare these to the individual band shapes of the programme stars.Comment: 41 pages, 20 figures, accepted by A&A. Tables 4 to 20 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    URBAN TERRAIN CLIMATOLOGY AND REMOTE SENSING *

    Full text link
    . Urban areas have been conceived of as monolithic heat islands because traditional ground observation techniques do not lend themselves to more specific analyses. Observations of urban energy-exchange obtained from calibrated electro-optical scanners combined with energy budget simulation techniques provide tools to relate the urban land use mosaic to the heat island phenomenon. Maps of surface energy-related phenomena were made from airborne scanner outputs for selected flightpaths across the city of Baltimore, Maryland. Conditions for the flight time were simulated according to the various types of land use using an energy budget simulation model which lends itself to extrapolation of simulated grid-point conditions into a map form. Maps made by simulation compare sufficiently well with those made by aerial observation to encourage further refinement of the simulation approach.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72392/1/j.1467-8306.1976.tb01110.x.pd

    Master of Science

    No full text
    thesisThe long wave thermal radiation flux density leaving the planet earth is determined for varoius meteorological air masses. Emission of infrared radiation by the surface of the earth as modified by eater vapor, carbon dioxide, and ozone is calculated by means of Elsasser radiation charts. The meteorological data used are those given by Petterssen, which do not represent climatological means, by certain typical situations. Lacking exact descriptions of the water vapor structure of the stratosphere, flux densities are calculated for two variant conditions, a dry and a moist stratosphere. Little difference results. It is assumed that all air masses, except those of distinctly dry character, might include clouds whose tops are found at one of the following levels: 800 mb, 700 mb, 500 mb, 300mb, and 200 mb. Hence flux densities are calculated for clear and clouded sky, with the result that cloudtop data are found to be extremely important. Since the soundings contain only shelter temperatures, whereas soil temperatures are needed, seven different temperatures for the ground are assumed for each individual case. Ground temperature is shown to be very important
    • 

    corecore