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Nanocellulose is often being regarded as the next generation renewable reinforcement for the production
of high performance biocomposites. This feature article reviews the various nanocellulose reinforced
polymer composites reported in literature and discusses the potential of nanocellulose as reinforcement
for the production of renewable high performance polymer nanocomposites. The theoretical and
experimentally determined tensile properties of nanocellulose are also reviewed. In addition to this,
the reinforcing ability of BC and NFC is juxtaposed. In order to analyse the various cellulose-reinforced
polymer nanocomposites reported in literature, Cox–Krenchel and rule-of-mixture models have been
used to elucidate the potential of nanocellulose in composite applications. There may be potential for
improvement since the tensile modulus and strength of most cellulose nanocomposites reported in liter-
ature scale linearly with the tensile modulus and strength of the cellulose nanopaper structures. Better
dispersion of individual cellulose nanofibres in the polymer matrix may improve composite properties.
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1. Introduction

The development of sustainable or renewable polymeric mate-
rials is an active research area that has received much attention [1].
This is mainly driven by the public’s growing demand for more
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Table 1
A comparison between various pulp-fibre reinforced phenolic resin composites with
sisal fibre reinforced and chopped tire cord reinforced phenolic composites [10,11]. E
and r represent the tensile modulus and strength of the fibre-reinforced composites,
respectively.

Reinforcement Resin content (wt.%) E (GPa) r (MPa)

Sisal fibres 40 7.6 72
Chopped tire cords 50 7.6 32
Black spruce kraft pulp 40 13.2 165
Yellow birch neutral sulfite 39 11.7 163
Black spruce Mitscherlich 39 13.1 139
Spruce ground wood 40 9.7 107
Spurce ground wood 12 12.4 97
Straw 30 185
Unbleached Manila hemp 228
Kraft 214
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environmental friendly materials. Unfortunately, the thermo-
mechanical performance of renewable polymers is often inferior
compared to traditional petroleum based polymers (Fig. 1). For
instance, many commercially available polylactides (PLA) are
brittle and possess low heat distortion temperatures [2]. The com-
posite materials concept is one solution for creating renewable
materials that match or exceed the performance of commonly used
petroleum-based engineering polymers. Combining bio-based/
renewable polymers with renewable reinforcements could address
the property-performance gap between renewable and petroleum-
based polymers. In fact, nature utilises composite materials for
load-bearing structures. Wood and bone show better mechanical
properties than most synthetic bio-based composites and may
inspire the development of new materials. Wood as a composite
material was further enunciated by Freudenberg [3]; he stated that
the cell walls of xylem are analogous to reinforced concrete. In his
own words:

‘‘The micelle series of cellulose may be compared with the iron
rods, and the lignin together with the hemicellulose with the
concrete in reinforced concrete. It is astonishing to see how
nature has here made use of two of the best principles of
rigidity which the human mind has independently discovered
only in our own time.’’

In the context of green composites, natural fibres are often
regarded as ideal candidate reinforcement because of their low
cost, low density, renewable resource origin and biodegradability
[4]. Natural fibre-reinforced polymer composites with excellent
properties possessing tensile moduli and strengths of up to
40 GPa and 280 MPa, respectively, have been manufactured [5].
Nonetheless, the reinforcing natural fibres themselves do suffer
from drawbacks such as limited processing temperature [6], high
linear coefficients of thermal expansion [7,8], batch-to-batch vari-
ability, moisture sensitivity and low absolute tensile strength com-
pared to synthetic fibres, such as glass, aramid or carbon fibres [4].

Another type of reinforcement for the production of high
strength and high toughness renewable composites are paper mats
in the form of plant fibre network structures. Paper based lami-
nates, as the name implies, are composites made by laminating
sheets of resin-impregnated paper into solid panels. ‘‘Papreg’’, for
example, is a phenolic resin impregnated paper based laminate
with high tensile strength developed in 1940 and 1950 [9]. These
materials were even used in aircraft structures. Such paper based
laminates had a phenolic resin content of 35 wt.% and possessed
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Fig. 1. Comparison between average tensile properties of commonly used synthetic
engineering fibres, renewable technical fibres, petroleum-based and renewable
polymers, respectively. BC denotes bacterial cellulose. Data obtained from MatWeb
(http://www.matweb.com) unless stated otherwise. The tensile properties of
natural and engineering fibres are obtained from Bismarck et al. [4]. The data for
BC and polyAESO were obtained from Hsieh et al. [57] and Lee et al. [154],
respectively.
a tensile strength and modulus of 188 MPa and 18.6 GPa, respec-
tively [10]. A summary of the tensile properties of ‘‘Papreg’’ in com-
parison to sisal fibre or chopped tire cord reinforced phenolic
resins is given in Table 1 [10,11]. The concept of ‘‘Papreg’’ was also
extended to the hood, fenders, roof, trunk lid and doors of the car
Trabant produced since 1957 by VEB Sachsenring Zwickau in the
former German Democratic Republic. The material was based on
phenolic resin reinforced by waste cotton imported from the
former Soviet Union. Whilst research on ‘‘Papreg’’ has disappeared,
the material is still produced and sold to date under various trade
names, for example as Phenolkraft for electrical components. The
concept of ‘‘Papreg’’ has been extended recently to sheets of nano-
cellulose [12–18], more commonly known as nanopapers [19].

The concept of using nanocellulose as reinforcement originated
from the possibility of exploiting the high stiffness and strength of
cellulose crystals in composite applications. Nanocellulose can be
obtained from various sources including algae [20], a sea animal
(tunicate) [21] and plant biomass [22,23]. Nanocellulose can also
be produced by biosynthesis by some bacteria, such as bacteria from
the Acetobacter species [24–27]; in this case it is known as bacterial
cellulose. To avoid confusion to the readers, it is worth mentioning
at this point that there are numerous terms used to describe
nanocellulose, which include: bacterial cellulose, microbial
cellulose, cellulose nanofibrils, nanofibrillated cellulose, microfibr-
illated cellulose, cellulose nanofibres, cellulose nanowhiskers,
cellulose whiskers, cellulose nanocrystals and nanocrystalline
cellulose. Whilst no agreed terminology exists to describe
‘nanometre scale cellulose’ yet, there have been attempts trying to
unify the terminology [16]. In this article, we adopt the generic term
‘nanocellulose’ to describe all of the aforementioned types of
non-acid hydrolysed nanometre scale cellulose. This feature article
is split into three sections; the first section briefly discusses
properties of nanocellulose, followed by a section reviewing the
progress to date on the use of nanocellulose obtained from plants
and bacteria as reinforcement for various polymers. The last part
discusses the reinforcing efficiency of nanocellulose in various
polymer matrices. The potential of nanocellulose as reinforcement,
in particular the possibilities for high-performance structural
applications is assessed in this article.
2. Nanocellulose – A brief introduction

Nanocellulose can be obtained via two approaches: bottom-up
by biosynthesis or top-down by disintegration of plant materials.
In 1886, Brown [26] observed that cellulose fibres are produced
bottom-up by the fermentation of low molecular weight sugars
using bacteria from the Acetobacter species. The cellulose fibres
produced, herein termed bacterial cellulose (BC), are inherently
nano-sized ribbon shaped cellulose fibrils, with largest lateral
dimension ranging from 25 to 86 nm and lengths of up to several

http://www.matweb.com


Fig. 2. Image showing a three-day old culture of Acetobacter xylinum. The gel-like pellicle can be seen in the culture. Under scanning electron microscope, the pellicle appears
to be made of a nanofibrillar network of cellulose. Obtained from Lee et al. [41] with kind permission from ACS publications.

Fig. 3. Image showing the nanometre-scale of a 1 wt.% NFC suspension in water. Obtained from Lee et al. [41] with kind permission from ACS publications.
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micrometres (see Fig. 2) [24]. For literature on the biosynthesis of
BC and recent advances of BC in various research areas including
tissue engineering, biomedical engineering and advanced fibre
composites, the readers are referred to recent reviews by Klemm
et al. [15,25,28], Blaker et al. [29] and Lee et al. [30]. With regards
to nanocellulose produced using the top-down approach, the earli-
est publication we found describing nanocellulose was published
in 1946 by Wuhrmann et al. [31]. The authors treated natural fibres
with strong ultrasound to disintegrate larger bundles of natural
fibres into smaller elementary fibrils whilst retaining the fibrous
texture. Herein, we term this type of nanocellulose, i.e. long and
semi-flexible fibrils from wood or any other plant material, nano-
fibrillated cellulose (NFC). Turbak et al. [22] and Herrick et al.
[23] reported the production NFC from wood using high-pressure
homogenisers to reduce the size of wood fibres down to the
nanometre scale. More recently, NFC were also produced by grind-
ing of wood pulp [32]. A suspension containing 1 wt.% NFC and the
morphology of NFC are shown in Fig. 3. For comprehensive reviews
on NFC production and applications, the readers are referred to Siró
and Plackett [33], Lavoine et al. [34] and Klemm et al. [16].

Whilst the diameters of NFC and BC are similar (<100 nm), the
main difference between the two types of nanocellulose is their
purity and crystal structure. BC is essentially pure cellulose. NFC,
on the other hand, usually is a composite itself consisting of both
cellulose and hemicellulose [35,36]. Lignin is often absent in NFC
as bleached pulp is mainly used as starting material. In addition
to this, NFC is based on plant cell wall microfibrils where cellulose
is organised in extended chain conformation and with a high degree
of long-range order. Cellulose is a semicrystalline fibrous polymer
with two different crystal structures in the native state; namely Ia
and Ib (see Fig. 4) [37]. Cellulose Ia possesses a one chain triclinic
unit cell [38] and cellulose Ib is composed of monoclinic unit cell
containing two parallel chains [39]. More importantly, both crystal
structures co-exist in the same cellulose sample [40]. However, the
relative proportion of Ia and Ib varies in cellulose of different ori-
gins; BC is cellulose Ia-rich whereas plant-based cellulose, such as
NFC, is Ib-rich. Even though the purity and crystal structures of BC
and NFC are different, it is possible that the reinforcing ability of
both types of nanocellulose in composites can be similar (Table 2)
[41]. When the tensile moduli of BC or NFC reinforced epoxy com-
posites were normalised from 49 vol.% (for BC reinforced epoxy)
and 58 vol.% (for NFC reinforced epoxy) to 60 vol.% nanocellulose
loading, the stiffness of the nanocomposites was the same. How-
ever, even when the BC reinforced epoxy nanocomposites had a
lower nanocellulose loading, the tensile strength of the resulting
BC reinforced epoxy nanocomposites was slightly higher than that
of NFC reinforced epoxy nanocomposites. This was attributed to the
high critical surface energy of BC (�57 mN m�1) compared to NFC
(42 mN m�1), which promotes better wetting of BC by the epoxy
resin, leading to better adhesion between BC and epoxy resin. It is
also possible that BC has higher intrinsic strength (see next section).
3. Tensile properties of nanocellulose

As aforementioned, the major driver for utilising nanocellulose
in load-bearing composites is the possibility to exploit the theoret-
ically predicted stiffness and strength of cellulose crystals.



Fig. 4. Projections of cellulose Ia (left) and Ib (right), respectively. Top row: down
the chain axes. Middle row: perpendicular to the chain axis and in the plane of
hydrogen bonded sheets. Bottom row: perpendicular to the hydrogen bonded
sheets. Obtained from Nishiyama et al. [38] with kind permission from ACS.

Table 2
A comparison between the tensile performance of BC and NFC reinforced epoxy
nanocomposites. vf, E, Enorm and r denote the nanocellulose loading, Young’s
modulus, normalised Young’s modulus to 60 vol.%, and tensile strength of the
nanocomposites, respectively. Adapted from Lee et al. [41].

Nanocellulose vf (vol.%) E (GPa) Enorm = E/vf � 60 (GPa) r (MPa)

BC 49 ± 2 7.1 ± 0.1 8.7 ± 0.2 102 ± 1
NFC 58 ± 1 8.5 ± 0.2 8.8 ± 0.2 96 ± 1
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Although it is challenging to determine the true modulus and
strength of cellulose crystals [12], theoretical calculations and
numerical simulations were used to estimate the axial modulus
of a cellulose crystal to be approximately 58–180 GPa [42–49]. Gil-
lis [50] obtained a theoretical cellulose crystal stiffness of nearly
300 GPa when he considered inter-chain hydrogen bonds and
straightening of the cellulose chains in his calculations. The mech-
anisms for cellulose deformation are discussed in-depth in a recent
Table 3
Theoretical tensile strength of cellulose crystals.

Calculation assumptions

Stress to cause cohesive fracture based on intra-chain link energy
Stress to cause chain scission based on potential energy function

Stress to cause separation of chains if ends are all in one transverse plane
Stress to cause sliding fracture

Stress normal to chain axis to rupture hydrogen bonds
Ultimate shear strength
molecular dynamics study [51]. It is also worth pointing out that at
the current state of knowledge, quantitative predictions of the
tensile properties of cellulose are not so reliable due to uncertain-
ties with respect to force fields at atomistic scale.

As for the tensile strength of cellulose, theoretical predictions
indicate that cellulose crystals have a tensile strength in the range
of 0.3–22 GPa [9,52–54]. The predicted high tensile strength of cel-
lulose is due to the extended chain conformation of crystalline cel-
lulose [55], the high density of covalent bonds per cross-sectional
area and the large number of inter- and intra-molecular hydrogen
bonding sites. Table 3 summarises the theoretical tensile strength
of cellulose crystals when assuming different failure mechanisms.
An important consideration is that experimental strength data
for strong, brittle fibres or nanofibre films depend on the specimen
size; smaller specimens tend to have a higher strength. The reason
is that strength is controlled by the largest defect in brittle
specimens [56].

Raman spectroscopy and X-ray diffraction have been used to
verify the theoretical values for the tensile modulus of nanocellu-
lose fibres experimentally. The values for a single cellulose nanofi-
bres obtained from these measurements were found to be between
100 and 160 GPa [57–61]. These values are in good agreement with
the theoretical axial modulus of cellulose crystals. In their original
study, Sakurada et al. [60] used ramie fibres with a small microfi-
brillar angle which were uniaxially loaded while measuring the
axial crystal displacement using in-situ X-ray diffraction. The mea-
sured tensile modulus was 134 GPa. The only uncertainty for this
measured tensile modulus is the true cross-sectional area of a plant
fibre cell. The experimental evaluation of the tensile strength of
single cellulose nanofibre, on the other hand, is more challenging.
A method to determine the strength of a single nanocellulose fibre
was suggested by Sehaqui et al. [62]. They prepared wood-based
NFC nanopapers, which were drawn into thin strips with a Her-
man’s orientation factor lower than 0.56. The measured tensile
strength of these strips was 430 MPa. This value cannot be taken
as the single fibre strength but it can be viewed as a lower bound
of the tensile strength of single NFC fibre. It should be possible to
improve the degree of NFC orientation and nanofibre straightness
within the strips or NFC fibres and use their tensile strength as
an indirect measure for the tensile strength of nanocellulose. Saito
et al. [63] used a more direct approach; sonication-induced frag-
mentation of single 2, 2, 6, 6, tetramethyl-piperidynyl-1-oxyl
(TEMPO) oxidised wood NFC was used to determine the critical
length. Based on modelling of the local stresses, the arithmetic
mean of the tensile strengths varied between 1.6 and 3.0 GPa.
These values are much lower than the theoretical value predicted
by Mark [53] but are in approximate agreement with the tensile
strength of cellulose crystals predicted when the failure mecha-
nism involves sliding fracture (see Table 3) [52,54]. Sonication-
induced fragmentation has been also used to fragment single bac-
terial cellulose nanofibre. However, the same authors found that
bacterial cellulose nanofibres could not be fragmented with their
existing experimental setup at the time of this publication [64].
Although BC has larger diameters than NFC, BC could also possess
rtheoretical (MPa) References

7340 [52]
226001 and 171502 1. [54]

2. [52]
280 [52]
12601 and 11902 1. [54]

2. [52]
300 [9]
323 [53]



Fig. 5. Number of publications in the area of cellulose nanocomposites. The title-
abstract-keywords search was performed on Scopus using the terms ‘cellulose AND
nanocomposite⁄’.

Table 4
Tensile properties of BC reinforced CAB nanocomposites. vf, E and r denote the BC
loading fractions, tensile modulus and tensile strength, respectively. Adapted from
Gindl and Keckes [71].

Nanocomposites vf (vol.%) E (GPa) r (MPa)

CAB 0 1.2 25.9
BC reinforced CAB 10 3.2 52.6

32 5.8 128.9
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higher strength than TEMPO-oxidised NFC, presumably due to
higher degree of polymerisation (BC: �2000–6000 [65], NFC:
�200–1000 [66]). In fact, the mean strengths of tunicate whiskers
are in the range of 3–6 GPa [63]. When we attempt to estimate the
modulus and strength of cellulose nanofibres, possible reference
materials are elementary single plant fibres, such as flax or ramie.
Based on direct experimental data [55], the elementary plant fibres
have a modulus of 100 GPa and a tensile strength of 1 GPa.
Although a ‘virgin’ cellulose nanofibre is expected to exceed these
values, the disintegration process, however, may damage the
structure, which will affect its properties.

4. Nanocellulose as reinforcement for polymer nanocomposites

The first use of nanocellulose as reinforcement for various
polymer including polypropylene, polystyrene and high density
polyethylene was reported by Boldizar et al. [67] although the full
implications of using nanocellulose as reinforcement were not
apparent. Later the strong reinforcing effects of small amounts of
nanocellulose were demonstrated and clarified by Favier et al.
[68,69]. They used nanocellulose whiskers1 derived from tunicate
to reinforce styrene and butyl acrylate copolymer latex with nano-
cellulose whisker loading fractions of up to 6 vol.%. Even at such
low nanocellulose loading, the nanocomposites had significantly
higher mechanical properties than the neat polymer in its elasto-
meric state. The authors ascribed this improvement to the formation
of a rigid cellulose whisker network within the nanocomposites due
to percolation of the nanocellulose whiskers. The nanocellulose
percolation threshold was estimated to be between 1 and 6 vol.%
depending on the cellulose source [13]. Dufresne and Vignon [70]
later demonstrated that potato pulp-derived nanofibrillated cellu-
lose obtained using a homogeniser showed similar improvements
of starch matrix in its elastomeric state. Since then, significant
research effort has been poured into the manufacturing and produc-
tion of high performance and/or multifunctional nanocellulose rein-
forced polymer composites. The number of publications on cellulose
nanocomposites has increased exponentially over the past decade
(see Fig. 5).

4.1. Reinforcing ability of BC in polymer nanocomposites

The use of BC as reinforcement in nanocomposites was first
demonstrated by Gindl and Keckes [71]. The authors reinforced
cellulose acetate butyrate (CAB) with various BC loading fractions.
1 These whiskers were obtained by acid hydrolysis of tunicin. This hydrolysed form
of nanocellulose from tunicin is commonly known as tunicate whiskers.
At a BC loading of 32 vol.%, the tensile properties of the resulting
nanocomposites improved by as much as 5 times compared to neat
CAB (Table 4). This implies that BC serves as excellent nano-
reinforcement for polymers. Fig. 6 summarises the tensile proper-
ties of BC reinforced polymer nanocomposites reported by various
authors in literature since then [41,71–94]. It can be seen from
Fig. 6 that BC reinforced polymer nanocomposites with tensile
moduli and strengths as high as 21 GPa and 320 MPa, respectively,
at 60 vol.% BC loading (vf, BC) have been manufactured. Tensile
strengths of up to 420 MPa were reported but at vf, BC = 84 vol.%
[93]. In order to ascertain whether BC as reinforcement does
produce high performance structural materials, a comparison is
made against a typical commercially available bulk polymer made
from renewable resources. Here, we chose poly(L-lactic acid) (PLLA)
as benchmark for comparison due to its availability at a reasonable
price and its already widespread use. Whilst PLLA may possess poor
impact properties and low thermal stability, it is still one of the high
performance non-petroleum derived polymers [2]. PLLA has a
tensile modulus and strength of 4.0 ± 0.1 GPa and 63 ± 2 MPa,
respectively [74]. These values are indicated as dashed lines in
Fig. 6. By comparing the data collected for all BC reinforced polymer
nanocomposites against our benchmark PLLA, we can see that both
the tensile moduli and strengths of most BC reinforced polymer
nanocomposites performed equally well or worse than PLLA when
the composites had a BC loading fraction vf, BC < 30 vol.%. However,
it should be noted that not all data tabulated in Fig. 6 used engineer-
ing polymers as the matrix and therefore, are not meant to produce
high performance structural materials.

Numerous studies have been dedicated to hydrophobise the
surface of BC in order to improve the compatibility between BC
and hydrophophobic polymer matrices. When BC was hydrophob-
ised using dodecanoic acid in an esterification reaction, measured
contact angles of PLLA droplets on the modified BC showed that
the wettability of PLLA on BC significantly increased (see Fig. 7)
[82]. This indicates that hydrophobisation of BC does indeed
improve the interaction between BC and PLLA. Model PLLA nano-
composites containing 5 wt.% modified BC also showed improve-
ments in tensile modulus and strength of 50% and 12%,
respectively, over neat PLLA. However, when compared to PLLA
nanocomposites containing 5 wt.% neat BC, the improvements of
modified BC-PLLA composite over neat BC-PLLA composite were
only marginal (5% in tensile modulus, but no improvement in ten-
sile strength was observed). Moreover, chemical modification of BC
(or nanocellulose in general) is very laborious. Solvent exchange
should be used as it was found that when freeze-dried BC was
modified, severe bulk modification occurred but surface-only mod-
ification was observed when the BC was solvent exchanged from
water through methanol into pyridine (the reaction medium)
[95]. Therefore, the simplest solution to realise truly high perfor-
mance BC reinforced polymer nanocomposites is to increase the
BC loading of unmodified beyond 30 vol.%. Whilst we also recog-
nise that conventional extrusion methods might not be able to dis-
perse vf, BC > 15 vol.% because of the tendency of nanocellulose to
aggregate [96], other composite manufacturing techniques could
be explored. These include wet impregnation of BC pellicles [91]
and vacuum assisted resin infusion [41].



Fig. 6. Tensile properties of BC reinforced polymer composites [41,71–94] and NFC reinforced polymer composites in literature [84,93,97,100–130]. E, r, vf, BC and vf, NFC

denote the tensile modulus, tensile strength, BC and NFC loadings, respectively. The dashed lines indicate the tensile properties of poly(L-lactic acid), taken as E = 4.0 ± 0.1 GPa
and r = 63 ± 2 MPa, respectively.

Fig. 7. PLLA melt droplets of (a) neat BC nanofibre and (b) dodecanoic acid esterified BC nanofibre. The contact angle between the nanofibre and PLLA (h) was evaluated using
the generalised drop length-height method. Images obtained from Lee et al. [82] with kind permission from Elsevier.
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4.2. Reinforcing ability of NFC in polymer nanocomposites

NFC was first demonstrated to improve the mechanical perfor-
mance of a polymer (potato-starch) by Dufresne et al. [97]. Later
on, Nakagaito and Yano [98] showed that NFC also improved the
tensile performance of a phenol–formaldehyde resin. Zimmermann
et al. [99] showed that NFC improved the properties of hydroxypro-
pylated cellulose (HPC) and Henriksson et al. [100] used melamine
formaldehyde (MF) to impregnate nanopaper. The tensile perfor-
mance of NFC reinforced polymer nanocomposites as a function
of NFC loading (vf, NFC) reported by various authors is summarised
in Fig. 6 [84,93,97,100–130]. It is apparent that much more data
are available for NFC reinforced polymer nanocomposites than for
BC reinforced polymer nanocomposites. This is not surprising as
numerous methods can be used to produce large quantities of
NFC in laboratories. The readers are referred to a review by Siró
and Plackett [33] for the various methods of producing NFC. The
production of BC, on the other hand, relies on the biosynthesis of
cellulose by bacteria. It could take weeks under laboratory
conditions to produce enough BC for composite manufacturing.
However, it should be noted that the large-scale production of BC
has been achieved by fzmb, some of it using a novel aerosol
bioreactor [30,131–133]. BC can also be produced in static cultures
in large quantities as a dessert known as nata de coco [134].

The properties of some NFC reinforced polymer nanocompos-
ites exceed our benchmark PLLA even when vf, NFC < 10 vol.%. The
matrices for these high performance NFC model nanocomposites
were PLLA [128], regenerated cellulose [106], enzymatically mod-
ified rye arabinoxylan [102] and polyvinyl alcohol [114], respec-
tively. In the case of arabinoxylan as matrix for NFC composites
[102], the authors used a biomimetic approach, whereby they
enzymatically modified the arabinoxylan to mimic the chemical
structure of arabinoxylan in cereal and softwood. As for polyvinyl
alcohol (PVA) as matrix [114], the use of water-soluble polymers
is postulated to aid the dispersion of NFC within the matrix. These
studies aside, NFC reinforced polymer nanocomposites outperform
PLLA only when vf, NFC > 30 vol.%. When vf, NFC was increased
towards 90 vol.%, tensile moduli and strengths of �14 GPa and
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�350 MPa were obtained for the resulting nanocomposites [93],
exceeding even the tensile properties of randomly oriented glass
fibre-reinforced polypropylene composites with a glass fibre
loading fraction of 60 wt.% [135,136]. One may note that NFC/HEC
composites can reach 200 MPa strength at vf, NFC = 54 vol.% [125].

4.3. Discussion: BC versus NFC as reinforcement for polymers

It is apparent that high performance nanocellulose reinforced
structural polymer composites can be manufactured. However,
this is only the case at high nanocellulose content, for instance if
vf > 30 wt.% (see Section 4.1 And 4.2). In simpler terms, there is
no homeopathic effect in nanocellulose reinforced polymer com-
posites as often observed for carbon nanotube reinforced polymers
[137,138]. The exception is nanocellulose-reinforced elastomers;
in such matrices nanocellulose does provide very strong reinforce-
ment effects at low loading fractions [139,140]. This enhancement
has been hypothesised to be due to the formation of a percolating
network of cellulose nanowhiskers [141] or nanofibres [142]
within elastomers, held together by hydrogen bonds [143]. Fur-
thermore, the reinforcing efficiency of nanocellulose in elastomers
is higher than in engineering polymers [144,145]. This was thought
to be due the fact that elastomers resulted in the strain of the
nanocomposites to be closer to that of the nanofibres. Even though
the mechanical performance of elastomers reinforced by nanocel-
lulose increased significantly over neat elastomers (especially at
elevated temperatures), it does not offer a route to produce struc-
tural materials. Furthermore, if the manufacturing of nanocompos-
ites with low loading fractions of nanocellulose failed to achieve
good nanocellulose dispersion, the formation of a percolating net-
work will be unlikely. In this case, the nanocellulose will behave
just like a micrometre-sized filler rather than nano-reinforcement.
This is the main challenge when low loading fractions of nanocel-
lulose are to be utilised in elastomers as nano-reinforcement.
Fig. 8. Tensile strength (r) versus modulus (E) curves for BC reinforced (top) and
NFC reinforced (bottom) polymer nanocomposites. Note that not all data points in
Fig. 6 can be shown in this figure as not all authors report both the tensile modulus
and strength of their manufactured cellulose nanocomposites.
In order to assess whether BC and NFC could be used as rein-
forcement to produce structural materials, we have plotted the
tensile moduli against tensile strengths of BC and NFC reinforced
polymer nanocomposites (Fig. 8). Approximately 20% of the data
for both BC and NFC composites reported in literature exceed the
overall tensile performance of PLLA, i.e. data points on the first
quadrant of Fig. 8. More importantly, it can be seen from Fig. 8 that
a linear relationship is observed for the modulus against strength
of BC reinforced polymer nanocomposites whilst the data scatter
is significantly higher for the NFC reinforced nanocomposites.
The reason is unclear but includes contributions from factors such
as variations in NFC geometry, composition, intrinsic properties,
degree of dispersion, orientation distribution and porosity of the
composites. It is also interesting to note that the highest tensile
modulus and strength of 21 GPa and 320 MPa at vf, BC = 60 vol.%,
respectively, was obtained for BC reinforced polymer nanocompos-
ites. The maximum tensile modulus and tensile strength for NFC
reinforced polymer nanocomposites, on the other hand, were
‘‘only’’ 14 GPa and 350 MPa at vf, NFC = 90 vol.%, respectively. Whilst
theoretical and experimental studies indicate that NFC and BC may
possess similar modulus and strength, the observed difference
suggests that the intrinsic properties of BC may be superior to NFC.

5. Micromechanical modelling to investigate the reinforcing
potential of BC- and NFC-reinforced model polymer
nanocomposites

Numerous micromechanical models have been developed to
predict the tensile strength and modulus of short fibre-reinforced
polymer composites. Micromechanical models have been reviewed
by Robinson and Robinson [146], Chow [147] and Asloun et al.
[148]. Cellulose nanocomposites have complex structures; the
nanofibres (i) tend to be curved due to a combination of high
aspect ratio, small diameter and the preparation methods used
for making the nanocomposites and (ii) because they possess alter-
nating disordered (amorphous) and crystalline domains along the
main axis. Furthermore, although the fibre orientation is often
assumed to be random-in-the-plane, there is usually significant
out-of-plane orientation [62]. However, when assuming BC and
NFC fibres behave as random short fibres, these micromechanical
models might still be useful to predict and verify experimental
data. In this section, we use micromechanical models to investigate
the various BC and NFC reinforced nanocomposites reported in
literature.

5.1. Tensile modulus of cellulose reinforced nanocomposites

One of the most commonly used micromechanical model for
the prediction of tensile moduli of randomly oriented short fibre
composites is the Cox–Krenchel model [149,150]. This model was
developed based on the classical shear-lag theory. The assump-
tions used in the development of this model are (i) fibre and matrix
response elastically, (ii) no axial loads on the fibre ends and
(iii) perfect fibre–matrix interface. The Cox–Krenchel model is
written as:

Ecomposite ¼ g0gLmf Ef þ ð1� mfÞEm ð1Þ

where Ecomposite, g0, gL, vf, Ef and Em represent the predicted tensile
modulus of the composite, fibre orientation factor, fibre volume
fraction, tensile modulus of the fibre and matrix, respectively. The
limited stress transfer efficiency caused by the fact that the fibres
have a finite length, gL, can be obtained from ‘shear-lag’ model:

gL ¼ 1�
tan h bL

2

� �
bL
2

ð2Þ



Fig. 9. A comparison between theoretical and experimental tensile modulus of BC
and NFC reinforced model composites. The hollow icons represent the experimental
data obtained by various authors. The solid line denotes theoretical values obtained
using Cox–Krenchel model. The dashed line denotes theoretical values obtained
using rule-of-mixture.
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where L, d, Gm, Xi and m denote the fibre length, fibre diameter, shear
modulus of the matrix, packing of fibres in the composites and
Poisson ratio of the matrix, respectively. However, there appears
to be some confusion regarding the value used for Xi in the
literature. This confusion stems from the definition of mean
centre-to-centre spacing between fibres and was first raised by
Thomason and Vlug [135]. The values for Xi obtained could be 1
or

ffiffiffi
3
p

=2 for square or hexagonal packing of fibres, respectively
when the mean centre-to-centre spacing between fibres is assumed
to be R. On the other hand, if one assumes the mean centre-to-
centre spacing between fibres to be 2R, we will obtain Xi = 4 and
2
ffiffiffi
3
p

for square packing and hexagonal packing of fibres, respec-
tively. In the original publication by Cox [149], Xi ¼

ffiffiffi
3
p

=2 was used.
Therefore, our analysis will use value for Xi of

ffiffiffi
3
p

=2 for hexagonal
packing of fibres, with a mean centre-to-centre fibre spacing of R.

A comparison between the predicted tensile moduli for BC and
NFC reinforced polymer nanocomposites and experimental data
obtained by various authors is shown in Fig. 9. For calculating the
tensile moduli of cellulose nanocomposites we chose imaginary
matrix moduli (Em) of 4 GPa and 1 GPa as these values represent
the upper and lower bounds of bulk technical and engineering
polymers, such as polypropylene, polyamide and high performance
epoxy resins. An average fibril modulus of Ef = 114 GPa was used for
BC reinforced model polymer nanocomposites [57]. This value was
back-calculated from the molecular deformation of nanocellulose
in cellulose nanocomposites studied using Raman spectroscopy.
For the case of NFC reinforcements, an average fibril modulus of
Ef = 107 GPa was used. This value was measured experimentally
in 3-point bending mode using AFM [151]. The other input
parameters for the prediction of BC and NFC reinforced polymer
nanocomposites are g0 = 3/8, assuming an in-plane isotropic
orientation of fibres in the nanocomposites, L = 0.005 mm (from
Fig. 2 and Fig. 3), m = 0.34 [152] and d = 0.00005 mm (from Fig. 2
and Fig. 3), respectively.

It can be seen from Fig. 9 that at low BC and NFC loading, the
experimental values lie in the region of moduli predicted by the
Cox–Krenchel model. However, a negative deviation from the pre-
dictions can be observed when vf, BC and vf, NFC exceed 10 vol.%.
This implies that at this vf, BC and vf, NFC, the single fibre tensile
modulus is not anymore fully utilised. Nonetheless, it should also
be noted the tensile modulus of BC reinforced model polymer
nanocomposite prepared by Yano et al. [91] clearly stood out,
matching again the prediction obtained using the Cox–Krenchel
model. This agreement would suggest that in this particular nano-
composite the single fibre tensile modulus of BC was fully utilised.
Yano et al. [91] used a wet impregnation technique, whereby the
dried BC pellicle was impregnated with an epoxy resin under
vacuum for 12 h followed by curing of the resin using ultraviolet
light. It is hypothesised that starting with wet BC pellicles is
important for the result, although the specific reasons are unclear.
However, it is not clear why the same improvement in the tensile
modulus of NFC reinforced polymer nanocomposites could not be
achieved when using the same drying and wet impregnation
method to impregnate NFC mats [127]. This question remains to
be elucidated by future research. One possibility is that the intrin-
sic modulus of BC ribbons is higher.

It is also worth mentioning that the ‘grafting from’ approach
and culturing of BC in presence of water-(in)soluble polymers did
also not yield nanocomposites that fully utilise the tensile modulus
of single nanocellulose fibre [72,88]. Instead, the tensile modulus
of these nanocomposites can be best describes by the rule-of-
mixture when using the properties of very high cellulose network
density, i.e. ‘nanopaper’, at a given fibre volume fraction. In order
to verify this, we have also plotted the predicted tensile modulus
of the nanocomposites (Fig. 9) obtained using the conventional
rule-of-mixture:

Ecomposite ¼ mf Ef þ ð1� v fÞEm ð5Þ

where Ef corresponds to the typical tensile modulus of nanopapers.
However, there are variations in the tensile moduli reported for
cellulose nanopaper structures. Values ranging from between
9.4 GPa [86] and 14 GPa [19] have been presented in the literature.
In this article, tensile moduli of nanopapers were assumed to be
12 GPa and 12.8 GPa for BC and NFC nanopaper, respectively, based
on a study by Lee et al. [41]. It can be seen from Fig. 9 that the
prediction from Eq. (5) matches more closely most experimental
values compared to Eqs. (1)–(4). This analysis suggests that instead
of utilising the stiffness of individual cellulose nanofibres, the stiff-
ness of cellulose nanopaper was controlling the moduli of high fibril
volume fraction cellulose nanocomposites. Not surprisingly, it
appears rather difficult to impregnate a high volume fraction nano-
cellulose network with monomers or polymers at a single fibre level.
This is postulated to be due to the tendency of nanocellulose to form
strong bonds between adjacent fibrils. This causes the formation of a
dense network layer of nanocellulose, which is difficult to impregnate.

5.2. Predicting the tensile strength of cellulose reinforced
nanocomposites

To predict the tensile strength of randomly-oriented short fibre
composites, the model developed by Kelly and Tyson [153] and



Fig. 10. A comparison between theoretical and experimental tensile strength of BC
and NFC reinforced model composites. The hollow icons represent data obtained by
various authors. The solid blue lines represent theoretical values obtained from
conventional rule-of-mixture. The dashed red lines represent an imaginary state
whereby cellulose nanopapers can be used to reinforce polymer matrices at such
low loading.
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modified for short and non-aligned fibre-reinforced composites is
often used [74,135,154]. This model can be written as:

rcomposite ¼ g0;m

X
i

Limi

2Lc
þ mj

X
j

1� Lc

2Lj

� �" #
rf þ ð1� mf Þrm ð6Þ

where rcomposite, rf, rm and mf denote the predicted strength of the
composite, fibre strength, matrix strength and fibre volume frac-
tion, respectively. In this equation, Lc represents the critical fibre
length. mi is the fibre volume fraction of fibres of length Li, which
is shorter than the critical fibre length and mj the fibre volume frac-
tion of fibres of length Lj, which is longer than the critical fibre
length. g0,v is a ‘virtual orientation factor’ that accounts for the ran-
dom orientation of fibres in the composites. Thomason and Vlug
[135] found a value of 0.2 for g0,v by fitting the experimentally mea-
sured tensile strength for randomly oriented discontinuous glass
fibre reinforced polypropylene composites. We have also recently
observed that g0,v = 0.2 fitted our experimental data of BC rein-
forced modified PLLA nanocomposites [74,154]. Fukuda and Chou
[155] have also derived values2 for g0,v based on the ‘critical zone’
concept. The authors defined the ‘critical zone’ as a pair of planes
separated by a distance, which cuts across the section normal to
the applied tensile stress and fibre alignment direction. A limiting
value for g0,v of 0.27 was obtained by the authors, which corre-
sponds to all fibres bridges (i.e. the fibres cutting across this zone)
in the defined ‘critical zone’. Our approximation value of g0,v = 0.2
corresponds to fibre bridging and ending in the ‘critical zone’.

However, it should be noted that this micromechanical analysis
remains empirical as g0,v has to be obtained first (usually via
experiments). Moreover, tensile strength is a complex property
that depends on the process of failure, which has not been clarified
for cellulose nanocomposites. Furthermore, another important
parameter in Eq. (6) is the length and critical length of the nanocel-
lulose fibres in the composites. Whilst the critical fibre lengths of
TEMPO-oxidised wood nanofibres and tunicate whiskers have
recently been obtained using ultrasonic fragmentation techniques
[63], these critical lengths do correspond to the lengths at which
these fibres did fragment in water, not in a representative polymer
matrix.

We established in Section 5.1 that the tensile modulus of the
nanocomposites can be best described by the rule-of-mixture
when using the properties of very high cellulose network density
(i.e. ‘nanopaper’). Here we take a similar approach to describing
the tensile strength of cellulose nanocomposites using an empirical
rule-of-mixtures approach with the ‘‘nanopaper’’ tensile strength
as input parameter:

rcomposite ¼ v frf þ ð1� v f Þrm ð7Þ

where rf corresponds to the tensile strength of cellulose nanopaper.
The prediction from Eq. (7) could be taken as the lower bound ten-
sile strength of cellulose nanocomposites as the tensile strength of a
single cellulose nanofibre is assumed to be under-utilised in most
composites. Similar to the case for tensile modulus of cellulose
nanopaper, there are large variations in reported tensile strengths
for cellulose nanopaper. Values ranging from between 103 MPa
[41] and 449 MPa [156] have been published in literature. The vast
difference in the tensile strength of nanopapers could be attributed
to the difference in intrinsic cellulose nanofibre strength and in the
quality of the nanopaper [19]. In this article, we used the highest
reported tensile strengths of BC and NFC nanopapers of 449 MPa
[156] and 232 MPa [157] respectively. For the polymer matrix ten-
sile strength we assumed an average value of 60 MPa, representing
a typical tensile strength for engineering polymers. With these
input parameters, Eq. (7) describes the maximum of the lower
2 In their original paper, the term ‘coefficient of alignment’ was used.
bound tensile strength of cellulose nanocomposites. It should also
be noted that Eq. (7) describes the maximum of the lower bound
tensile strength for cellulose nanocomposites. The term ‘‘maxi-
mum’’ refers to the highest reported tensile strength of cellulose
nanopapers. Fig. 10 shows the indicated strength obtained using
conventional rule-of-mixture. The nature of the transition from a
percolated but sparse nanocellulose network within the polymer
matrix to a dense cellulose nanopaper reinforcement is not known.
We expect the percolating cellulose network in the nanocomposites
to be rather loose and therefore its should perhaps not be regarded
as a very dense cellulose network (i.e. ‘‘nanopaper’’) between
6 vol.% and 18 vol.%. Nonetheless, a recent study showed that the
cellulose network could be considered as a nanopaper within the
cellulose nanocomposites with loading fractions of 18 vol.% [76].
Therefore, the predicted tensile strength values for less than
18 vol.% (red dashed lines) should be regarded as purely theoretical
as the nanocellulose might not exist as a dense nanopaper network
but instead be a 3D percolated network of cellulose nanofibres.

Our analysis shows that there is still potential for strength
improvement in random-in-the-plane BC-reinforced polymer
nanocomposites, since most data points lie below the lower bound
tensile strength predicted using the rule-of-mixture. Higher tensile
strength of the cellulose nanofiber network is probably a key to
improved nanocomposite strength. The BC-reinforced polymer
nanocomposites produced by Yano et al. [91] and Zhou et al. [90]
stand out in the present comparison, exceeding the maximum
achievable lower bound tensile strength values. Both of these stud-
ies actually used BC pellicles, where the polymer matrix was
adsorbed or impregnated. It is likely that these authors managed
to utilise the tensile strength of individual BC nanofibres.

For the case of NFC-reinforced polymer nanocomposites, several
data points stood out, exceeding our maximum lower bound pre-
dictions using Eq. (7). These nanocomposites were manufactured
by simple co-filtering a water suspension of NFC containing
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water-soluble polymer, followed by consolidation and cross-
linking. This is indeed a convenient way of manufacturing high
performance NFC-reinforced nanocomposites. The use of water-
soluble polymers however limits the number of potential applica-
tions of nanocellulose composites. Comparing NFC to BC, our
analysis did clearly show that high performance BC-reinforced
polymer nanocomposites are more difficult to prepare due to
challenges with composite fabrication methods.
6. Summary and outlook

Nanocellulose is a promising reinforcement for renewable nano-
composites and has recently gained significant research interest due
to the possibility of exploiting the stiffness and strength of cellulose
crystals. In this feature article, we critically discussed the use of NFC
and BC as nanoreinforcement for polymers. The tensile properties of
NFC and BC reinforced polymer nanocomposites produced by vari-
ous authors in the literature have been compiled in this article. PLLA
was chosen as our benchmark comparison as it is bio-derived and
possesses a good mechanical performance profile compared to
other green polymers. When comparing the tensile properties of
the nanocomposites to PLLA, it was found only 20% of the nanocom-
posites reported in the literature exceed the tensile properties of
PLLA. In addition to this, most of these composites do not even
exceed the mechanical performance of pulp paper reinforced
phenolic resins, known as ‘papreg’, which was invented in the
1940s [9–11]. Moreover, a nanocellulose loading of greater than
30 vol.% is required to produce cellulose reinforced polymer nano-
composites with tensile properties exceeding those of our bench-
mark polymer, indicating that low nanofibre content does not lead
to dramatic property improvements in nanocellulose reinforced
polymer composites. Indeed, many reports of strong reinforcement
effects for nanocomposites in general at low nanoparticle content
rely on modification effects of the polymer structure. Examples
include crystallization or molecular orientation effects [158,159].

Whilst both NFC and BC serve as excellent nano-reinforcement
for the production of high performance nanocomposites, it was
observed that BC does outperform NFC as reinforcement. A tensile
modulus and strength of 21 GPa and 320 MPa, respectively, were
obtained for random-in-the-plane BC reinforced epoxy composites
at vf, BC = 60 vol.% [91]. These values are the highest reported so far
for cellulose-reinforced nanocomposites. The maximum tensile
modulus and strength of NFC reinforced polymer nanocomposites,
on the other hand, was ‘‘only’’ 14 GPa and 350 MPa, respectively. It
should also be noted that this was only achieved at vf, NFC = 90
vol.%. This indicates a difference in intrinsic mechanical properties
of NFC and BC fibrils. Another possibility is the presence of hemi-
cellulose (up to 30 wt.%). Defects in the form of fibril agglomerates
may also be detrimental to NFC nanocomposite strength.

The Cox–Krenchel model has also been used to study the tensile
modulus of various cellulose-reinforced polymer nanocomposites.
A negative deviation from the predicted tensile modulus was
observed at high vf, indicating that the tensile stiffness of individ-
ual cellulose nanofibres has not been fully exploited or has yet to
be fully exploited. Instead, most studies utilised only the tensile
modulus of cellulose ‘nanopapers’ (nanofibre networks), which is
much lower compared to the modulus and strength of single nano-
fibres. This has been verified by comparing the tensile modulus and
strength of various cellulose-reinforced polymer nanocomposites
with values predicted using the rule-of-mixture, with the tensile
modulus and strength of nanopapers (BC: 12.0 GPa and 449 MPa,
respectively; NFC: 12.8 GPa and 232 MPa, respectively) instead of
nanofibres.

We have shown so far that high performance cellulose-
reinforced polymer nanocomposites that exceed the mechanical
properties of PLLA can be produced if and only if vf was increased
beyond 30 vol.%. However, a few challenges have yet to be
addressed; One of the key challenges is to produce nanocomposites
that do not only utilise the tensile modulus of cellulose
‘nanopapers’ but the tensile stiffness (and strength) of individual
nanocellulose fibrils. The wetting of nanocellulose by the polymer
matrix and the uniform distribution of nanocellulose within the
nanocomposites should also be addressed. It was also shown by
Yano et al. [91] that impregnating a uniform three-dimensional
BC pellicle with a suitable epoxy resin produces truly high
performance cellulose reinforced polymer nanocomposites. This
method, however, is very laborious and not commercially viable.
Therefore, novel manufacturing routes should be exploited to
control the cellulose nanofibre dispersion and orientation distribu-
tion. To further reduce the cost of nanocellulose, the composite
manufacturing method explored should also be technically feasible
and commercially viable. This may motivate industry to further
exploit nanocellulose in commercial applications.
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