25 research outputs found

    A contribution to the study of the molecular mobility in polymeric materials by Thermal and Dielectric Analysis

    Full text link
    Tesis por compendio[EN] The development of new and more complex polymeric materials involves challenging problems to basic sciences. The relationship between structure and molecular dynamics assumes great importance for the future development of novel technologies based on such polymers. Thus, the understanding of how small changes in the chemical structure affect the properties of the material is essential to progress in the technological and scientific area. An in-depth analysis of the molecular mobility leads to establish the structure-properties relationships. On this basis, the main aim of the present work is to study the molecular mobility of two different families of polymeric materials. For this purpose, the experimental techniques mainly used were Differential Scanning Calorimetry (DSC) and Dielectric Relaxation Spectroscopy (DRS). The first family of polymers characterized was a series of chemically cross-linked copolymers composed by Vinylpyrrolidone (VP) and Butyl Acrylate (BA) monomers. In the first place, the influence of the monomer molar ratio (XVP/YBA) on the copolymer properties was studied. Thus, a Fourier Transform Infrared Spectroscopy (FTIR) analysis verified dipole-dipole interactions between amide groups. The influence of these interactions on several parameters related to the molecular mobility was evidenced by the DSC, DRS and Dynamic Mechanical Analysis (DMA) techniques. Secondly, the effect of the cross-link density on the molecular dynamics of 60VP/40BA copolymers was analyzed using DSC and DRS. One single glass transition was detected by DSC measurements. The DRS analysis showed that an increase of the cross-linking produced a typical effect on the alpha process dynamics. However, the beta process, which possessed typical features of pure JG relaxation, unexpectedly lost the intermolecular character for the highest cross-linker content. The fastest gamma process was relatively unaffected. The second family of polymeric materials studied was a series of segmented polycarbonatediol polyurethane (PUPH) modified with different amounts of expanded graphite (EG) conductive filler. Scanning Electron Microscopy (SEM), X-ray diffraction measurements and FTIR analysis demonstrated a homogeneous dispersion of the EG filler in the matrix. DRS was used to study the dielectric properties of the PUPH/EG composites. The dielectric permittivity of the composites showed an insulator to conductor percolation transition with the increase of the EG content (2030 wt%). The addition of expanded graphite to the matrix caused a dramatic increase in the electrical conductivity of ten orders of magnitude, which is an indication of percolative behavior.[ES] El desarrollo de nuevos materiales poliméricos de mayor complejidad produce un desafío cada vez mayor en el área de las ciencias básicas. La relación entre la estructura y la dinámica molecular resulta de gran importancia para el desarrollo de nuevas tecnologías basadas en estos materiales poliméricos. Así, una mayor comprensión de cómo pequeños cambios en la estructura química afectan a las propiedades de los materiales resulta esencial para el progreso científico y tecnológico. Un análisis en profundidad de la movilidad molecular permite establecer las relaciones estructura-propiedades. Partiendo de esta base, el principal objetivo del presente trabajo es el estudio de la movilidad molecular de dos familias diferentes de materiales poliméricos. Para ello, las técnicas experimentales utilizadas fueron principalmente la Calorimetría Diferencial de Barrido (DSC) y la Espectroscopia de Relajación Dieléctrica (DRS). La primera familia de polímeros caracterizada fue una serie de copolímeros entrecruzados químicamente compuestos por los monómeros Vinilpirrolidona (VP) y Acrilato de Butilo (BA). En primer lugar, se estudió la influencia de la proporción molar de monómero (XVP/YBA) en las propiedades del copolímero. A través de un análisis por Espectroscopia de Infrarrojo por Transformada de Fourier (FTIR), se verificó la existencia de interacciones dipolo-dipolo entre los grupos amida. Mediante el análisis por DSC, DRS y Análisis Dinamomecánico (DMA), se evidenció la influencia de estas interacciones en diferentes parámetros relacionados con la movilidad molecular. En segundo lugar, se analizó el efecto de la densidad de entrecruzamiento en la dinámica molecular de los copolímeros 60VP/40BA usando DSC y DRS. A través de las medidas de DSC se observó una única transición vítrea para todos los entrecruzamientos. El análisis por DRS mostró como el incremento en entrecruzante produjo el típico efecto en la dinámica del proceso alpha, pero sin embargo, el proceso beta, que tenía las características típicas de una relajación JG, perdió de forma inesperada su carácter intermolecular para el mayor contenido en entrecruzante. El proceso gamma no se vio afectado. La segunda familia de materiales poliméricos estudiada fue una serie de poliuretanos segmentados (PUPH) modificados con diferentes cantidades de grafito expandido (EG), utilizado como relleno conductivo (desde 0 a 50% en peso). El análisis de los resultados obtenidos mediante Microscopía Electrónica de Barrido (SEM), Difracción de Rayos X y FTIR demostró la homogénea dispersión del relleno de EG en la matriz de PUPH. La técnica DRS se usó para estudiar las propiedades dieléctricas de los materiales compuestos PUPH/EG. La permitividad dieléctrica de los materiales mostró una transición de percolación desde aislante a conductor al incrementarse el contenido en EG (rango de 20-30% en peso). La adición de grafito expandido a la matriz de PUPH causó un incremento significativo en la conductividad dieléctrica de diez órdenes de magnitud, lo que indica el comportamiento de percolación.[CA] El desenvolupament de nous materials polimèrics de major complexitat produeix un desafiament cada vegada major en l'àrea de les ciències bàsiques. La relació entre l'estructura i la dinàmica molecular resulta de gran importància per al desenrotllament de noves tecnologies basades en aquests materials polimèrics. Així, una major comprensió de com petits canvis en l'estructura química afecten a les propietats dels materials, resulta essencial per al progrés científic i tecnològic. Un anàlisis en profunditat de la mobilitat molecular permet establir les relacions estructura-propietats. Partint d'aquesta base, el principal objectiu del present treball és l'estudi de la mobilitat molecular de dues famílies diferents de materials polimèrics. Per a això, les tècniques experimentals utilitzades van ser principalment la Calorimetria Diferencial de Rastreig (DSC) i l'Espectroscòpia de Relaxació Dielèctrica (DRS). La primera família de polímers caracteritzada va ser una sèrie de copolímers entrecreuats químicament compostos pels monòmers Vinilpirrolidona (VP) i Acrilat de Butilo (BA) . En primer lloc, es va estudiar la influència de la proporció molar de monòmer (XVP/YBA) en les propietats del copolímer. A través d'una anàlisi per Espectroscòpia d'Infraroig per Transformada de Fourier (FTIR), es va verificar l'existència d'interaccions dipol-dipol entre els grups amida. Mitjançant l'anàlisi per DSC, DRS i Anàlisi Dinamomecánico (DMA), es va evidenciar la influència d'aquestes interaccions en diferents paràmetres relacionats amb la mobilitat molecular. En segon lloc, es va analitzar l'efecte de la densitat d'entrecreuament en la dinàmica molecular dels copolímers 60VP/40BA mitjançant DSC i DRS. A través de les mesures de DSC es va observar una única transició vítria per a tots els continguts d'agent entrecreuant . L'anàlisi per DRS va mostrar com l'increment en agent entrecreuant va produir l'efecte esperat en la dinàmica del procés alfa. En canvi, el procés beta, que tenia les característiques típiques d'una relaxació JG, va perdre de forma inesperada el seu caràcter intermolecular per al major contingut en agent entrecreuant. El procés més ràpid gamma no es va veure afectat. La segona família de materials polimèrics estudiada va ser una sèrie de poliuretans segmentats (PUPH) modificats amb diferents quantitats de grafit expandit (EG) , utilitzat com a farcit conductiu (des de 0 a 50% en pes). L'anàlisi dels resultats obtinguts per mitjà de Microscòpia Electrònica de Rastreig (SEM), Difracció de Rajos X i FTIR va mostrar la dispersió homogènia del EG en la matriu de PUPH. La tècnica DRS es va utilitzar per a estudiar les propietats dielèctriques dels materials compostos PUPH/EG. La permitivitat dielèctrica dels materials va mostrar una transició de percolació des d'aïllant a conductor amb l'increment de contingut en EG (20-30% en pes). L'addició d'EG a la matriu de PUPH va causar un increment significatiu en la conductivitat dielèctrica, de deu ordes de magnitud.Redondo Foj, MB. (2015). A contribution to the study of the molecular mobility in polymeric materials by Thermal and Dielectric Analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59457TESISCompendi

    A smart material for the in situ detection of mercury in fish

    Get PDF
    We have developed a new fluorogenic polymer capable of detecting the presence of mercury contamination in fish samples. The modified polymer emits blue light when irradiated with UV light proportional to the quantity of mercury, as MeHg+ or Hg2+, present in fish. The quantitative relation between the concentration of mercury in fish and the increase of fluorescence in the polymer in contact with fish samples was confirmed, giving rise to quick and reliable results in the measurements of the presence of mercury in fish using a portable fluorogenic polymeric probe.theMinisterio de Economı´a y Competitividad, Spain, and Fondo Europeo de Desarrollo Regional (FEDER) (Projects CTQ2015-71353-R and MAT2014-54137-R), Junta de Castilla y Leo´n, Consejerı´a de Educacio´n y Cultura y Fondo Social Europeo (Projects BU051U16 and BU061U16), and the European Commission, Seventh Framework Programme (Project SNIFFER FP7-SEC-2012-312411

    Microcellular polymeric foams based on 1‐vinyl‐2‐pyrrolidone and butyl‐acrylate with tuned thermal conductivity

    Get PDF
    Microcellular polymers have been produced by ScCO2 foaming, based on 1-vinyl-2-pyrrolidone (VP) and butyl-acrylate (BA). Three different copolymers were prepared, varying the compositions of VP and BA, following a simple radical polymerization process using an UV initiator. The samples a good foaming behavior and also excellent flexibility and handle ability, with expansion ratios between 1.53 and 1.72, and cell sizes in the microcellular range (below 5 mm). However, it was observed that the gas distribution and, consequently, the cellular structure inside the polymer foams was highly dependent on the VP and BA proportions, leading to very different thermal conductivity values, even for similar volume gas fraction values. These results were related to the copolymer nanostructuration, which seems to have an influence in the final pore structure, thus opening the possibility of designing microcellular foams with similar macroscopic characteristics but different thermal conductivity valuesFEDER and both the Spanish Ministerio de Economıa y Competitividad (MAT2014–54137-R) and the Consejerıa de Educacion-Junta de Castilla y Leon (BU061U16

    The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers

    Full text link
    The effect of the cross-link density on the molecular dynamics of copolymers composed of vinylpyrrolidone (VP) and butyl acrylate (BA) was studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). A single glass transition was detected by DSC measurements. The dielectric spectra exhibit conductive processes and three dipolar relaxations labeled as a, b and g in the decreasing order of temperatures. The cross-linker content affects both a and b processes, but the fastest g process is relatively unaffected. An increase of cross-linking produces a typical effect on the a process dynamics: (i) the glass transition temperature is increased, (ii) the dispersion is broadened, (iii) its strength is decreased and (iv) the relaxation times are increased. However, the b process, which possesses typical features of a pure Johari Goldstein relaxation, unexpectedly loses the intermolecular character for the highest cross-linker content.B.R.F., M.J.S., P.O.S. and M.C. gratefully acknowledge CICYT for grant MAT2012-33483. F.G. and J.M.G. acknowledge the Spanish Ministerio de Economia y Competitividad-FEDER (MAT2014-54137-R) and the Junta de Castilla y Leon (BU232U13).Redondo Foj, MB.; Sanchis Sánchez, MJ.; Ortiz Serna, MP.; Carsí Rosique, M.; García, JM.; García, FC. (2015). The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers. Soft Matter. 11:7171-7180. https://doi.org/10.1039/c5sm00714cS7171718011V. Bühler , Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Copovidone , Springer , Berlin , 2005Haaf, F., Sanner, A., & Straub, F. (1985). Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Polymer Journal, 17(1), 143-152. doi:10.1295/polymj.17.143Gallardo, A., Rocío Lemus, A., San Román, J., Cifuentes, A., & Díez-Masa, J.-C. (1999). Micellar Electrokinetic Chromatography Applied to Copolymer Systems with Heterogeneous Distribution. Macromolecules, 32(3), 610-617. doi:10.1021/ma981144pDevine, D. M., & Higginbotham, C. L. (2005). Synthesis and characterisation of chemically crosslinked N-vinyl pyrrolidinone (NVP) based hydrogels. European Polymer Journal, 41(6), 1272-1279. doi:10.1016/j.eurpolymj.2004.12.022Devine, D. M., Devery, S. M., Lyons, J. G., Geever, L. M., Kennedy, J. E., & Higginbotham, C. L. (2006). Multifunctional polyvinylpyrrolidinone-polyacrylic acid copolymer hydrogels for biomedical applications. International Journal of Pharmaceutics, 326(1-2), 50-59. doi:10.1016/j.ijpharm.2006.07.008Jin, S., Gu, J., Shi, Y., Shao, K., Yu, X., & Yue, G. (2013). Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. European Polymer Journal, 49(7), 1871-1880. doi:10.1016/j.eurpolymj.2013.04.022Borns, M. A., Kalakkunnath, S., Kalika, D. S., Kusuma, V. A., & Freeman, B. D. (2007). Dynamic relaxation characteristics of crosslinked poly(ethylene oxide) copolymer networks: Influence of short chain pendant groups. Polymer, 48(25), 7316-7328. doi:10.1016/j.polymer.2007.10.020Qazvini, N. T., & Mohammadi, N. (2005). Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content. Polymer, 46(21), 9088-9096. doi:10.1016/j.polymer.2005.06.118Cook, W. D., Scott, T. F., Quay-Thevenon, S., & Forsythe, J. S. (2004). Dynamic mechanical thermal analysis of thermally stable and thermally reactive network polymers. Journal of Applied Polymer Science, 93(3), 1348-1359. doi:10.1002/app.20569Viciosa, M. T., Rouzé, N., Dionísio, M., & Gómez Ribelles, J. L. (2007). Dielectric and mechanical relaxation processes in methyl acrylate/tri-ethyleneglycol dimethacrylate copolymer networks. European Polymer Journal, 43(4), 1516-1529. doi:10.1016/j.eurpolymj.2007.01.043Jobish, J., Charoen, N., & Praveen, P. (2012). Dielectric properties and AC conductivity studies of novel NR/PVA full-interpenetrating polymer networks. Journal of Non-Crystalline Solids, 358(8), 1113-1119. doi:10.1016/j.jnoncrysol.2012.02.003Bekin, S., Sarmad, S., Gürkan, K., Keçeli, G., & Gürdağ, G. (2014). Synthesis, characterization and bending behavior of electroresponsive sodium alginate/poly(acrylic acid) interpenetrating network films under an electric field stimulus. Sensors and Actuators B: Chemical, 202, 878-892. doi:10.1016/j.snb.2014.06.051F. Kremer and A.Schönhals , Broadband Dielectric Spectroscopy , Springer-Verlag , Berlin Heidelberg, New York , 2003Roland, C. M. (1994). Constraints on Local Segmental Motion in Poly(vinylethylene) Networks. Macromolecules, 27(15), 4242-4247. doi:10.1021/ma00093a027Patil, P. N., Rath, S. K., Sharma, S. K., Sudarshan, K., Maheshwari, P., Patri, M., … Pujari, P. K. (2013). Free volumes and structural relaxations in diglycidyl ether of bisphenol-A based epoxy–polyether amine networks. Soft Matter, 9(13), 3589. doi:10.1039/c3sm27525fCasalini, R., & Roland, C. M. (2010). Effect of crosslinking on the secondary relaxation in polyvinylethylene. Journal of Polymer Science Part B: Polymer Physics, 48(5), 582-587. doi:10.1002/polb.21925Carsi, M., Sanchis, M. J., Diaz-Calleja, R., Riande, E., & Nugent, M. J. D. (2012). Effect of Cross-Linking on the Molecular Motions and Nanodomains Segregation in Polymethacrylates Containing Aliphatic Alcohol Ether Residues. Macromolecules, 45(8), 3571-3580. doi:10.1021/ma202811pCarsí, M., Sanchis, M. J., Díaz-Calleja, R., Riande, E., & Nugent, M. J. D. (2013). Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl methacrylate) chains. European Polymer Journal, 49(6), 1495-1502. doi:10.1016/j.eurpolymj.2012.12.012Kalakkunnath, S., Kalika, D. S., Lin, H., Raharjo, R. D., & Freeman, B. D. (2007). Molecular Dynamics of Poly(ethylene glycol) and Poly(propylene glycol) Copolymer Networks by Broadband Dielectric Spectroscopy. Macromolecules, 40(8), 2773-2781. doi:10.1021/ma070016aSabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Balado, A. A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2009). Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks. Journal of Polymer Science Part B: Polymer Physics, 47(2), 183-193. doi:10.1002/polb.21629Nogales, A., Sanz, A., Ezquerra, T. A., Quintana, R., & Muñoz-Guerra, S. (2006). Molecular dynamics of poly(butylene tert-butyl isophthalate) and its copolymers with poly(butylene terephthalate) as revealed by broadband dielectric spectroscopy. Polymer, 47(20), 7078-7084. doi:10.1016/j.polymer.2006.07.044Sanz, A., Nogales, A., Ezquerra, T. A., Lotti, N., & Finelli, L. (2004). Cooperativity of theβ-relaxations in aromatic polymers. Physical Review E, 70(2). doi:10.1103/physreve.70.021502Johari, G. P., & Goldstein, M. (1970). Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules. The Journal of Chemical Physics, 53(6), 2372-2388. doi:10.1063/1.1674335Johari, G. P., & Smyth, C. P. (1972). Dielectric Relaxation of Rigid Molecules in Supercooled Decalin. The Journal of Chemical Physics, 56(9), 4411-4418. doi:10.1063/1.1677882Paluch, M., Pawlus, S., Hensel-Bielowka, S., Kaminska, E., Prevosto, D., Capaccioli, S., … Ngai, K. L. (2005). Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process? The Journal of Chemical Physics, 122(23), 234506. doi:10.1063/1.1931669Ngai, K. L. (1998). Relation between some secondary relaxations and the α relaxations in glass-forming materials according to the coupling model. The Journal of Chemical Physics, 109(16), 6982-6994. doi:10.1063/1.477334Ngai, K. L., & Paluch, M. (2004). Classification of secondary relaxation in glass-formers based on dynamic properties. The Journal of Chemical Physics, 120(2), 857-873. doi:10.1063/1.1630295Casalini, R., Ngai, K. L., & Roland, C. M. (2003). Connection between the high-frequency crossover of the temperature dependence of the relaxation time and the change of intermolecular coupling in glass-forming liquids. Physical Review B, 68(1). doi:10.1103/physrevb.68.014201Ngai, K. L., & Tsang, K. Y. (1999). Similarity of relaxation in supercooled liquids and interacting arrays of oscillators. Physical Review E, 60(4), 4511-4517. doi:10.1103/physreve.60.4511Donth, E. (1996). Characteristic length of the glass transition. Journal of Polymer Science Part B: Polymer Physics, 34(17), 2881-2892. doi:10.1002/(sici)1099-0488(199612)34:173.0.co;2-uWilliams, G. (s. f.). Molecular aspects of multiple dielectric relaxation processes in solid polymers. Electric Phenomena in Polymer Science, 59-92. doi:10.1007/3-540-09456-3_3Ngai, K., & Capaccioli, S. (2004). Relation between the activation energy of the Johari-Goldstein β relaxation and T_{g} of glass formers. Physical Review E, 69(3). doi:10.1103/physreve.69.031501Casalini, R., & Roland, C. M. (2003). Pressure Evolution of the Excess Wing in a Type-BGlass Former. Physical Review Letters, 91(1). doi:10.1103/physrevlett.91.015702Redondo-Foj, B., Carsí, M., Ortiz-Serna, P., Sanchis, M. J., García, F., & García, J. M. (2013). Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy. Journal of Physics D: Applied Physics, 46(29), 295304. doi:10.1088/0022-3727/46/29/295304Redondo-Foj, B., Carsí, M., Ortiz-Serna, P., Sanchis, M. J., Vallejos, S., García, F., & García, J. M. (2014). Effect of the Dipole–Dipole Interactions in the Molecular Dynamics of Poly(vinylpyrrolidone)-Based Copolymers. Macromolecules, 47(15), 5334-5346. doi:10.1021/ma500800aBershtein, V. A., Egorova, L. M., Yakushev, P. N., Pissis, P., Sysel, P., & Brozova, L. (2002). Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability. Journal of Polymer Science Part B: Polymer Physics, 40(10), 1056-1069. doi:10.1002/polb.10162Alves, N. M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer, 46(2), 491-504. doi:10.1016/j.polymer.2004.11.016Scott, T. F., Cook, W. D., & Forsythe, J. S. (2002). Kinetics and network structure of thermally cured vinyl ester resins. European Polymer Journal, 38(4), 705-716. doi:10.1016/s0014-3057(01)00244-0Wagner, K. W. (1914). Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik, 2(9), 371-387. doi:10.1007/bf01657322Hodge, I. M., Ngai, K. L., & Moynihan, C. T. (2005). Comments on the electric modulus function. Journal of Non-Crystalline Solids, 351(2), 104-115. doi:10.1016/j.jnoncrysol.2004.07.089Williams, G., & Watts, D. C. (1970). Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 66, 80. doi:10.1039/tf9706600080Williams, G., Watts, D. C., Dev, S. B., & North, A. M. (1971). Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 67, 1323. doi:10.1039/tf9716701323Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111S. Havriliak and S.Negami , Dielectric and Mechanical Relaxation in Materials , Hanser , Munich , 1997 , p. 57Glatz-Reichenbach, J. K. W., Sorriero, L., & Fitzgerald, J. J. (1994). Influence of Crosslinking on the Molecular Relaxation of an Amorphous Copolymer Near Its Glass-Transition Temperature. Macromolecules, 27(6), 1338-1343. doi:10.1021/ma00084a010Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906Boyd, R. H. (1985). Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer, 26(3), 323-347. doi:10.1016/0032-3861(85)90192-2Laredo, E., Grimau, M., Sánchez, F., & Bello, A. (2003). Water Absorption Effect on the Dynamic Properties of Nylon-6 by Dielectric Spectroscopy. Macromolecules, 36(26), 9840-9850. doi:10.1021/ma034954wHuo, P., & Cebe, P. (1992). Dielectric relaxation of poly(phenylene sulfide) containing a fraction of rigid amorphous phase. Journal of Polymer Science Part B: Polymer Physics, 30(3), 239-250. doi:10.1002/polb.1992.090300303Noda, N., Lee, Y.-H., Bur, A. J., Prabhu, V. M., Snyder, C. R., Roth, S. C., & McBrearty, M. (2005). Dielectric properties of nylon 6/clay nanocomposites from on-line process monitoring and off-line measurements. Polymer, 46(18), 7201-7217. doi:10.1016/j.polymer.2005.06.046Ryabov, Y. E., Nuriel, H., Marom, G., & Feldman, Y. (2002). Relaxation peak broadening and polymer chain dynamics in aramid-fiber-reinforced nylon-66 microcomposites. Journal of Polymer Science Part B: Polymer Physics, 41(3), 217-223. doi:10.1002/polb.10384Janik, P., Paluch, M., Ziolo, J., Sulkowski, W., & Nikiel, L. (2001). Low-frequency dielectric relaxation in rubber. Physical Review E, 64(4). doi:10.1103/physreve.64.042502Feldman, Y., Puzenko, A., & Ryabov, Y. (2002). Non-Debye dielectric relaxation in complex materials. Chemical Physics, 284(1-2), 139-168. doi:10.1016/s0301-0104(02)00545-1Ortiz-Serna, P., Díaz-Calleja, R., Sanchis, M. J., Floudas, G., Nunes, R. C., Martins, A. F., & Visconte, L. L. (2010). Dynamics of Natural Rubber as a Function of Frequency, Temperature, and Pressure. A Dielectric Spectroscopy Investigation. Macromolecules, 43(11), 5094-5102. doi:10.1021/ma1004869Ortiz-Serna, P., Díaz-Calleja, R., Sanchis, M. J., Riande, E., Nunes, R., Martins, A., & Visconte, L. (2011). Dielectric spectroscopy of natural rubber-cellulose II nanocomposites. Journal of Non-Crystalline Solids, 357(2), 598-604. doi:10.1016/j.jnoncrysol.2010.06.044E. Riande and R.Díaz-Calleja , Electrical Properties of Polymers , Marcel Dekker , New York , 2004Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.xTammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121Lunkenheimer, P., Schneider, U., Brand, R., & Loid, A. (2000). Glassy dynamics. Contemporary Physics, 41(1), 15-36. doi:10.1080/001075100181259Angell, C. A. (1995). Formation of Glasses from Liquids and Biopolymers. Science, 267(5206), 1924-1935. doi:10.1126/science.267.5206.1924C. A. Angell , Complex Behavior of Glassy Systems; Proceedings of the XIV Sitges Conference , Sitges, Barcelona, Spain, 1996F. J. Bermejo , H. E.Fischer , M. A.Ramos , A.de Andrés , J.Dawidowski and V.Fayos , in Complex Behaviour of Glassy Systems , Springer Lecture Notes in Physics , ed. M. Rubí and C. Pérez-Vicente , Springer , Berlin-Heidelberg , 1997Böhmer, R., Ngai, K. L., Angell, C. A., & Plazek, D. J. (1993). Nonexponential relaxations in strong and fragile glass formers. The Journal of Chemical Physics, 99(5), 4201-4209. doi:10.1063/1.466117Böhmer, R., & Angell, C. A. (1992). Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Physical Review B, 45(17), 10091-10094. doi:10.1103/physrevb.45.10091Böhmer, R., & Angell, C. A. (1993). Elastic and viscoelastic properties of amorphous selenium and identification of the phase transition between ring and chain structures. Physical Review B, 48(9), 5857-5864. doi:10.1103/physrevb.48.5857Merino, E. G., Atlas, S., Raihane, M., Belfkira, A., Lahcini, M., Hult, A., … Correia, N. T. (2011). Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy. European Polymer Journal, 47(7), 1429-1446. doi:10.1016/j.eurpolymj.2011.04.006Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9Qin, Q., & McKenna, G. B. (2006). Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. Journal of Non-Crystalline Solids, 352(28-29), 2977-2985. doi:10.1016/j.jnoncrysol.2006.04.014Kohlrausch, R. (1854). Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik und Chemie, 167(2), 179-214. doi:10.1002/andp.18541670203Zorn, R. (1999). Applicability of distribution functions for the Havriliak-Negami spectral function. Journal of Polymer Science Part B: Polymer Physics, 37(10), 1043-1044. doi:10.1002/(sici)1099-0488(19990515)37:103.0.co;2-hNgai, K. L., & Roland, C. M. (1993). Intermolecular cooperativity and the temperature dependence of segmental relaxation in semicrystalline polymers. Macromolecules, 26(11), 2688-2690. doi:10.1021/ma00063a008K. L. Ngai , Relaxation and diffusion in complex systems , Springer , Berlin , 2011Ikeda, M., & Aniya, M. (2010). Correlation between fragility and cooperativity in bulk metallic glass-forming liquids. Intermetallics, 18(10), 1796-1799. doi:10.1016/j.intermet.2010.01.009Patkowski, A., Paluch, M., & Gapiński, J. (2003). Relationship between T0, Tg and their pressure dependence for supercooled liquids. Journal of Non-Crystalline Solids, 330(1-3), 259-263. doi:10.1016/j.jnoncrysol.2003.09.002Delpouve, N., Delbreilh, L., Stoclet, G., Saiter, A., & Dargent, E. (2014). Structural Dependence of the Molecular Mobility in the Amorphous Fractions of Polylactide. Macromolecules, 47(15), 5186-5197. doi:10.1021/ma500839

    An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings

    Full text link
    Segmented polycarbonatediol polyurethane (PUPH) has been synthesized and modified with different amounts of graphite conductive filler (from 0 to 50 wt%). Thermal and dynamical thermal analysis of the composites clearly indicates changes in the polyurethane relaxations upon addition of graphite. Broadband dielectric spectroscopy has been used to study the dielectric properties of the (PUPH) and one composite in the frequency range from 10−2 to 107 Hz and in the temperature window of −140 to 170 ◦C. Relaxation processes associated with different molecular motions and conductivity phenomena (Maxwell–Wagner–Sillars and electrode polarization) are discussed and related to the graphite contentWe acknowledge the financial support of the Ministry of Finances and Competitiveness through the Grant CDS2010-0044 belonging to the "Consolider-Ingenio Programme" and for the Grant MAT2012-33483. The authors thank UBE Chem Eur for the PCD supply for this work.Gómez, C.; Culebras, M.; Cantarero Saez, A.; Redondo Foj, MB.; Ortiz Serna, MP.; Carsí Rosique, M.; Sanchis Sánchez, MJ. (2013). An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings. Applied Surface Science. 275:295-302. https://doi.org/10.1016/j.apsusc.2012.12.108S29530227

    Polymeric chemosensor for the detection and quantification of chloride in human sweat. Application to the diagnosis of cystic fibrosis

    Get PDF
    We have developed a new extremely hydrophilic polymeric film suitable for the detection and quantification of chloride in human sweat directly on the skin. The film, or membrane, has chemically anchored 6-methoxyquinoline groups as chloride responsive fluorescent motifs. We have prepared the sensory material from a standard vinyl copolymer, by a convenient and easy solid-phase reaction. The sensory material has a water swelling percentage of 700%, facilitating an immediate detection of chloride, is reusable for at least 6 cycles and can be handled without care by unskilled persons. The initially high fluorescence of the material decreases in the presence of chloride, allowing the quantification of chloride concentration by using the colour definition of a digital picture or a fluorimeter. The suitability of the material to perform quantitative chloride analysis of human sweat by putting it in contact with the skin offers promise for its application in the sweat test used for the diagnosis of cystic fibrosis (CF).FEDER and both the Spanish Ministerio de Economía y Competitividad (MAT2014-54137-R and MAT2017-84501-R) and the Consejería de Educación – Junta de Castilla y León (BU092U16 and BU061U16

    Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy

    Full text link
    [EN] A poly(vinylpyrrolidone-co-butyl acrylate) (60VP-40BA) membrane is synthesized as a tractable and hydrophilic material, obtaining a water-swelling percentage around 60%. An investigation of molecular mobility by means of differential scanning calorimetry, dynamic mechanical analysis and broadband dielectric relaxation spectroscopy (DRS) is fulfilled in the dry membrane. Dielectric and viscoelastic relaxation measurements are carried out on the 60VP-40BA sample at several frequencies between -150 and 150 degrees C. The dielectric spectrum shows several relaxation processes labelled gamma, beta and alpha in increasing order of temperature, whereas in the mechanical spectrum only the beta and alpha relaxation processes are completely defined. In the dielectric measurements, conductive contributions overlap the alpha-relaxation. The apparent activation energies have similar values for the beta-relaxation in both, the mechanical and the dielectric measurements. The beta process is a Johari-Golstein secondary relaxation and it is related to the local motions of the pyrrolidone group accompanied by the motion of the segments of the polymer backbone. The gamma process is connected with the butyl unit's motions, both located in the side chains of the polymer.BRF, MC, PO and MJS are grateful to CICYT for grant MAT2012-33483. FG and JMG thank the Spanish Ministerio de Economia y Competitividad-FEDER (MAT2011-22544) and the Consejeria de Educacion-Junta de Castilla y Leon (BU001A10-2).Redondo Foj, MB.; Carsí Rosique, M.; Ortiz Serna, MP.; Sanchis Sánchez, MJ.; García, FC.; García. José Miguel (2013). Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 46(29):295304-1-295304-12. https://doi.org/10.1088/0022-3727/46/29/295304S295304-1295304-12462

    Electrical conductivity of natural rubber cellulose II nanocomposites

    Full text link
    [EN] Nanocomposite materials obtained from natural rubber (NR) reinforced with different amounts of cellulose II (cell) nanoparticles (in the range of 0 to 30 phr) are studied by dielectric spectroscopy (DS) in a broad temperature range (¿150 to 150 °C). For comparative purposes, the pure materials, NR and cell, are also investigated. An analysis of the cell content effect on the conductive properties of the nanocomposites was carried out. The dielectric spectra exhibit conductivity phenomena at low frequencies and high temperatures: Maxwell¿Wagner¿ Sillars (MWS) and electrode polarization (EP) conductive processes were observed in the nanocomposite samples.We thank Professor Regina Nunes of the Instituto de Macromoleculas Eloisa Mano (Universidade Federal do Rio de Janeiro) for providing us the NR and NR-cell samples. This work was financially supported by DGCYT through grant MAT2012-33483.Ortiz Serna, MP.; Carsí Rosique, M.; Redondo Foj, MB.; Sanchis Sánchez, MJ. (2014). Electrical conductivity of natural rubber cellulose II nanocomposites. Journal of Non-Crystalline Solids. 405:180-187. https://doi.org/10.1016/j.jnoncrysol.2014.09.026S18018740

    Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay

    Full text link
    [EN] Nanocomposites comprising biodegradable carrageenan and glycerol(KCg) as the host polymer, with different contents of natural montmorillonite (MMT) as filler, were prepared by a solution casting process. Different techniques have been used to determine the interaction/behavior among the different components of the samples such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscope (TEM) and, mainly, Dielectric relaxation spectroscopy (DRS). FTIR indicates hydrogen interaction between carrageenan matrix and silicate that is confirmed by the XRD data indicating some kind of carrageenan intercalation between the MMT layers. A rather homogenous distribution of MMT into KCg matrix were observed using transmission electron microscopy. The MMT effect on the molecular mobility at the glass transition was studied by dielectric relaxation spectroscopy. The MMT addition resulted in a slower relaxation and a wider distribution ofthe relaxation times. The fragility index, m, increased upon MMT incorporation, which may be attributed to a reduction in mobility chains, due to the MMT confinement of the KCg network. In addition, the apparent activation energy associated with the relaxation dynamics of the chains at Tg increased with the MMT content. The modified films developed in this paper could be used to prepare biodegradable and edible packaging films and films for biomedical applications with improved mechanical and good dielectric response.This work was supported by the Direccion General de Ciencia y Tecnologia (DGCYT) [MAT2015-63955-R]; the Vice-Rectorate for Research of the Pontificia Universidad Catolica del Peru and the National Council of Science, Technology and Technological Innovation of Peru (CONCYTEC/FONDECYT).Sanchis Sánchez, MJ.; Carsí Rosique, M.; Culebras, M.; Gomez- Clari, CM.; Rodríguez, S.; García-Torres. F. (2017). Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay. Carbohydrate Polymers. 176:117-126. https://doi.org/10.1016/j.carbpol.2017.08.012S11712617

    Colorimetric detection, quantification and extraction of Fe(III) in water by acrylic polymers with pendant Kojic acid motifs

    Get PDF
    We synthesized a solid sensory material for the extraction, detection and quantification of iron(III) in aqueous media. The material is a film-shaped colorless polymer membrane that exhibits gel behavior. The Fe(III) extraction and sensing characteristics are imparted by a new monomer derived from a natural product (i.e., Kojic acid), which exhibits chelating properties toward Fe(III). The sorption of Fe(III) on the membrane in water has been thoroughly characterized, including the sorption kinetics, sorption isotherms and profiles as a function of the pH. Fe(III) sorption followed pseudo first-order kinetics and required approximately 30 min to reach equilibrium. The maximum sorption capacity was approximately 0.04 mmol/g, and the sorption isotherms are well modeled by the Langmuir equation. The complexes that were found in the solid phase are in good agreement with those previously identified in the aqueous phase. Moreover, the sorption is highly specific (i.e., a recognition process) and results from the formation of a colored complex (iron(III)-Kojic acid derivative moieties). Therefore, the colorless sensory membrane turns red upon immersion in aqueous solutions containing Fe(III). The color output allows for both the qualitative visual determination of the Fe(III) concentration as well as also titration of Fe(III) using a) a UV/vis technique (limit of detection of 3.6 × 10−5 M; dynamic range of five decades, lower concentration = 1.65 × 10−6 M) and b) a computer vision-based analytical chemistry approach via color definition of the sensory membrane (RGB parameters) obtained from an image recorded with a handy device (e.g., a smartphone) (limit of detection of 2.0 × 10−5 M).Spanish Ministerio de Economía y Competitividad-Feder(MAT2014-54137-R) and by the Consejería de Educación—Junta deCastilla y León (BU232U13)
    corecore