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Graphical abstract 

 

Research highlights 

• A colorimetric sensory polymer for the detection of Fe(III) was synthesized. 

• This polymer was prepared from a monomer derived from Kojic acid, which is a 

natural product. 

• The film-shaped polymer was cut to obtain manageable solid sensory kits. 

• Fe(III) was efficiently extracted, detected, discriminated and quantified from 

water. 

• UV/vis and computer vision-based techniques were used for Fe(III) analysis. 

ABSTRACT 

We synthesized a solid sensory material for the extraction, detection and quantification 

of iron(III) in aqueous media. The material is a film-shaped colorless polymer 

membrane that exhibits gel behavior. The Fe(III) extraction and sensing characteristics 
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are imparted by a new monomer derived from a natural product (i.e., Kojic acid), which 

exhibits chelating properties toward Fe(III). The sorption of Fe(III) on the membrane in 

water has been thoroughly characterized, including the sorption kinetics, sorption 

isotherms and profiles as a function of the pH. Fe(III) sorption followed pseudo first-

order kinetics and required approximately 30 min to reach equilibrium. The maximum 

sorption capacity was approximately 0.04 mmol/g, and the sorption isotherms are well 

modeled by the Langmuir equation. The complexes that were found in the solid phase 

are in good agreement with those previously identified in the aqueous phase. Moreover, 

the sorption is highly specific (i.e., a recognition process) and results from the formation 

of a colored complex (iron(III)-Kojic acid derivative moieties). Therefore, the colorless 

sensory membrane turns red upon immersion in aqueous solutions containing Fe(III). 

The color output allows for both the qualitative visual determination of the Fe(III) 

concentration as well as also titration of Fe(III) using a) a UV/vis technique (limit of 

detection of 3.6x10-5 M; dynamic range of five decades, lower concentration = 1.65x10-

6 M) and b) a computer vision-based analytical chemistry approach via color definition 

of the sensory membrane (RGB parameters) obtained from an image recorded with a 

handy device (e.g., a smartphone) (limit of detection of 2.0x10-5 M). 

Keywords 

Sensory polymers, Kojic acid, visual detection, iron detection, iron extraction 

 

1. INTRODUCTION 

The wide distribution of iron as cations in different oxidation states in the environment 

has both natural and anthropogenic origins. The latter is caused by its multiple 

applications in agriculture, industry, construction, medicine, households, and advanced 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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technological fields, which has led to increasing concerns over the potential effects of 

iron on the environment as well as in living things [1]. 

Therefore, the detection and quantification of iron salts is a fundamental task in 

chemistry due to its crucial role in living organisms and being extremely dangerous 

when its concentration exceeds a critical level. Its quantification is still a fundamental 

task in clinical chemistry but it is also of interest in environmental and agri-food fields. 

Currently, routine analyses are performed using methods that require trained staff and 

expensive equipment and techniques, such as atomic absorption spectroscopy (AAS) or 

inductively coupled plasma mass spectrometry (ICP-MS). However, chemical sensors 

allow for conversion of the iron salt concentration into signals that can be read by 

widely available instruments or even by an untrained observer, especially if the signal is 

a color change (chromogenic sensor). A sensor is a self-contained analytical device that 

is able to convert a physical quantity, which is related to a chemical species 

concentration, into a signal that can be read by an observer or an instrument [2-8]. 

Sensors are used in everyday objects and have innumerable applications that are often 

overlooked [9]. 

In recent years, we have focused on investigating solid-phase sensors for 

iron(III) analysis to develop a quick, easy and cheap method for the quantitative 

determination of metal ions [10-13]. In this study, we report a novel polymeric 

membrane for visual iron(III) sensing that features a derivative of Kojic acid as the 

receptor moiety. Kojic acid, which is a γ-pyrone derivative (5-hydroxy-2-

(hydroxymethyl)-4-pyrone), is a natural heterocyclic chelating ligand [14], and anions 

of Kojic acid and its derivatives act as bidentate ligands to strongly coordinate to 

iron(III) via carbonyl and phenolic hydroxyl groups [15]. 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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The film-shaped membrane is a manageable material that can be cut into solid 

sensory kits (e.g., small sensory discs). To develop a solid-phase sensor, the sorption of 

the selected target species as well as the kinetic and thermodynamic properties must be 

characterized. Therefore, a full characterization of the material was performed to 

determine the kinetics, isotherms and sorption profiles of iron(III) as a function of pH. 

For the colorimetric iron(III) sensing behavior of the membrane, the membrane is 

initially colorless and transparent but after immersion in iron(III) solutions, it turns red 

within minutes. Its performance was evaluated using ultraviolet-visible spectroscopy 

(UV/vis). In addition, a titration curve was constructed using the UV/vis data from the 

spectra recorded from sensory discs placed in contact with water solutions containing 

different iron(III) concentrations. Moreover, the titration was also performed using an 

image of the sensory discs (i.e., color digital definition (RGB parameters) of the 

previously mentioned sensory discs (computer vision-based analytical chemistry). 

Therefore, the solid sensory discs are manageable materials that can be handle without 

care, stored under ambient conditions for long periods of time, and used to measure the 

concentration of Fe(III) even by untrained personnel using images recorded using 

widely available devices, such as mobile phones and tablets.  

2. EXPERIMENTAL SECTION 

The materials, synthetic procedures and measurements methods and methodologies are 

described in the Supporting Information (ESI) in Section S1. 

2.1. Preparation of sensory materials 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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The sensory monomer derived from Kojic acid (3) was prepared according with the 

experimental procedure described in the ESI (Section S1) and shown schematically in 

Scheme 1. 

The film-shaped sensory membranes were prepared via bulk radical 

polymerization of hydrophilic monomers including 1-vinyl-2-pyrrolidone (VP), 2-

hydroxyethyl acrylate (2HEA), and a monomer derived from Kojic acid (3). Ethylene 

glycol dimethacrylate (EGDMA) was used as a cross-linking agent (Scheme 2). The 

VP/2HEA/(3)/EGDMA comonomer molar ratio was 75/24/1/10. AIBN (1 wt%) was 

employed as a thermal radical initiator. The bulk radical polymerization reaction was 

carried out in a 200 µm thick silanized glass mold in an oxygen-free atmosphere at 60ºC 

overnight. After demolding, the film was conditioned at 60ºC for an additional night. 

The solid sensory substrates were manufactured from the film-shaped membrane by 

using a puncher to cut out sensory discs (8 mm diameter). 

Scheme 1. 

 

Scheme 2 

3. RESULTS AND DISCUSSION 

Our objective was to prepare an easily handled solid material for the extraction, 

detection and quantification of Fe(III) in pure water. The material consists a film-shaped 

polymer network with derivative of Kojic acid in its structure, which acts as a receptor 

and chemosensory core for Fe(III). The polymer has a cross-linked structure that is 

hydrophilic and acts as a membrane with gel behavior, allowing Fe(III) ions in water to 

enter into the material as solvated species where they interact with the receptors to give 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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rise to the extraction and sensing phenomena. Kojic acid was chosen as the receptor 

because it is a natural product and a well-known chelating ligand that strongly 

coordinates to iron(III), which results in red-colored complexes [14-16]. Moreover, 

Kojic acid has been used for many years for the spectrophotometric determination of 

iron in different contexts (e.g., in ores) [17,18]. Therefore, we designed and prepared an 

acrylic monomer (3) containing a Kojic acid sensory motif to synthesize a membrane 

for use as a colorimetric sensor and solid-phase extractant (Scheme 1). The mechanism 

of detection and extraction of Fe(III) involves the formation of red Fe(III)n:(Kojate 

motifs)m chelates with primary stoichiometries (n:m) of 1:1, 1:2 and 1:3 (Scheme S1, 

ESI). The stability constants for the interaction between iron(III) and Kojic acid have 

been reported by Muraki and are log K1 = 10.20, log K2 = 8.78, and log K3 = 7.53 [16]. 

The stoichiometry of the Fe(III)n:(Kojate motifs)m species in the solid state (i.e., inside 

the membrane) and the relative exchange coefficients that are described below for our 

system are in agreement with those for the species in solution [16]. 

3.1. Material preparation and characterization 

The methacrylate sensory monomer (3) could not be conventionally prepared in a single 

step from Kojic acid and methacryloyl chloride but was synthesized using a two-step 

procedure. First, the treatment of Kojic acid with thionyl chloride led to the reaction of 

the primary alcohol with the formation of a Kojic acid primary chloro-derivative [19] 

that led to (3) by reaction with potassium methacrylate at 100ºC (no thermal initiated 

polymerization was observed) [20]. The reaction steps are schematically shown in 

Scheme 1. The 1H and 13C NMR as well as FTIR spectra of the intermediates and 

monomers are provided in the experimental section and in the ESI, Section S1. The 

potential applicability of the sensory membrane was confirmed by the fact that less than 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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1.6% by weight of the sensory synthetic monomer (3) was used in the preparation of the 

sensory material and >98.4% by weight of commercial and inexpensive comonomers. 

The membrane or film exhibits a good physical appearance and was creasable 

and easily handled. The thermal resistance was evaluated by thermogravimetric analysis 

(TGA). The degradation temperatures that resulted in a 5% and 10% weight loss under 

inert and oxidizing atmospheres (T5) were ~280ºC and ~280ºC, respectively, which is in 

agreement with the TGA data for the VP and 2HEA copolymers [10,21]. The thermal 

degradation patterns were affected by the sorption of Fe(III) by the membrane. The 

immersion of the membrane in water containing a relatively low concentration of Fe(III) 

increased T5 to 355ºC due to the additional crosslinking caused by the formation of 

Fe(III)1:(Kojic acid moieties)2 and Fe(III)1:(Kojic acid moieties)3 (Figure S5, ESI). In 

contrast, immersion in water with a higher concentration of Fe(III) decreased T5 to 

300ºC due to partial displacement or complexation to Fe(III)1:(Kojic acid moieties)1 

species with a concomitant decrease in the crosslinking density (please see the sorption 

and sensing results below). 

Gel behavior is relevant for a membrane to sense in pure water because the 

target species enter into the material as solvated species by diffusion. However, the 

water uptake has to be modulated to maintained good mechanical properties in the 

swelled state. Therefore, a moderate water swelling percentage ranging from 40% to 

100% is desirable. The membrane composition was designed to meet this criterion, and 

its water swelling percentage was 65%. 

3.2. Sorption studies 

3.2.1. Sorption kinetics and isotherms 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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For example, the kinetic profiles of iron(III) sorption on the membrane are shown in 

Figure 1. Kinetic experiments are useful to determine the time required to reach 

equilibrium between the two phases. The experiments were performed under acid 

conditions (pH 2.5) to avoid iron(III) hydrolysis reactions. 

Iron(III) sorption on the membrane required approximately 30 min to achieve 

equilibrium. The experimental data are fitted using a HPDM model (homogeneous 

particle diffusion model) where the diffusion of ions from the solution to the sorbent is 

the slowest step. The relationship between the amount of sorbed metal ion in the solid 

phase (q, mmol g-1) and time (t, min) is formally equal to the pseudo first order kinetic 

equation [22], and the rate constant (k) was determined to be 0.20(2) min-1 (R2=0.979; 

SE(y) = 0.015). 

Figure 1. 

The sorption isotherm of iron(III) on the membrane in a 0.1 M KNO3 solution at 

25°C and pH 2.5 are shown in Figure 2. 

 Figure 2.  

The Langmuir and Freundlich models are typically employed to describe the 

relationship between q (sorbed quantity in the solid phase, mmol g-1) and Ceq (solute 

concentration at equilibrium). Their varied performances have been previously reviewed 

[23].  

The Langmuir model provided the best description of the sorption of Fe(III) on 

the membrane. Based on non-linear fitting of the data in Figure 2, the maximum 

sorption capacity qmax was 0.041(2) mmol g-1, and KL= 6.5(9) × 103 M-1 (R2 = 0.984; 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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SE(y) = 0.002). The theoretical total number of active sites calculated from the weight 

percentages of (3) in the membrane was 0.07 mmol g-1, which is in agreement with the 

obtained qmax.  

3.2.2. Sorption profiles 

The thermodynamic characterization of ion-exchange and chelating materials is 

fundamental for describing the separation process and predicting the behavior of analyte 

sorption on solid phases in different systems. As previously mentioned, especially for 

ion-exchange and complexing resins [23-25], a metal ion (M) can be sorbed onto a 

chelating solid phase via complexation reactions, and the general equilibrium can be 

expressed as follows: 

       (1) 

where M is the metal ion, HrL is the r-protonated form of the active site of the solid 

phase, H is the proton, and the overbar represents species in the solid phase. Charges are 

omitted for simplicity. This reaction is studied based on the sorption profiles as a 

function of pH. This method has been previously described in several papers and 

reviews [23-28]. This method enables us to describe the sorption curve with an equation 

obtained using a combination of exchange coefficients (β1npex) that are associated with 

each possible reaction between the metal ion and the active site and selected to 

minimize the difference between the calculated and experimental sorption profiles. 

The exchange coefficient (β1npex) can be expressed as follows: 

n
r

q
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]LH[[M]
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        (2) 
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The exchange coefficients depend on the concentration of the counter ion in the 

solution and in the solid phase, and the intrinsic complexation constants (β1npi) are 

independent of the composition of the solution. Therefore, these values characterize the 

sorption equilibria. The relationship between the exchange coefficient and the intrinsic 

complexation constant can be expressed as follows [23,24]: 

( ) ( )
H C

1 i 1 ( )
M

[C]   
[C]

γ γ
β β

γ

−

−
⋅

= ⋅ ⋅
q m-q m q

np npex m q
      (3) 

where m is the charge of the metal, γX is the activity coefficients of species X and C is 

the counter ion of the active site of the solid material. 

Different experiments were performed under different conditions, and the set of 

intrinsic constants that were calculated in the first experiment should be equal (within 

the experimental error) to that determined under any other studied conditions. The 

intrinsic protonation constants are independent of the experimental conditions. 

Therefore, these constants characterize the sorption reactions. For simplicity, the active 

sites in the solid phase are always in analytical excess with respect to the metal ion 

because these conditions are close to those in a practical application. 

Once the reactions have been identified, the ligand properties of the solid phase 

in the considered ionic media and at the specific pH values can be described by a 

partition coefficient (K*), which represents the ratio of total metal ions in the solid phase 

to free metal ions in solution and can be expressed as follows: 

[ ]
1 ex*

H L

[M] H

β  ⋅  = =
⋅ ∑

n
np r

q
c VK

w
       (4) 
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where c is the concentration of the sorbed metal, V (mL) is the volume of the solution 

phase and w (g) is the mass of dry solid material. The summation is extended to all of 

the complexes that are formed by the considered metal ion with the active group of the 

solid phase.  

The strategy for selecting the sorption reactions begins by considering the 

simplest stoichiometries and reactions equal to those of the "monomeric units" in 

solution. In this study, we selected the complexation constants of the Fe(III)/Kojic acid 

complexes in aqueous solution as input data. 

Some examples of the sorption profiles are shown in Figure 3, where the 

symbols represent the experimental data and the continuous lines represent the 

calculated sorption curves. 

The sorption was studied both in the absence and presence of two different 

ligands (i.e., 2,6-pyridine dicarboxylic acid (PDCA) and sodium oxalate). These ligands 

compete with active sites on the membrane, shift the sorption at a higher pH, and make 

it possible to identify any other complexes of the metal ion with the solid phase. 

Figure 3. 

A fairly good fit was obtained for all three profiles assuming the formation of 

the following complexes in solid phase with the same set of exchange coefficients: FeL 

logβ101ex = 10(5), FeL2 logβ102ex = 19.8(4), FeL3 logβ103ex ≈ 25.3, FeHL3 logβ113ex = 

32.7(9), and Fe(OH)L3 logβ1−13ex =17.5(3). The first three exchange coefficients in the 

solid phase are in good agreement with the computed conditional constants in solution 

[16]. 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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Based on these results, two other protonated species (i.e., FeHL3 and FeL3OH) 

can be formed in the solid phase. These complexes have never been previously reported 

for Kojic acid in aqueous solutions but they are most likely promoted by the high 

concentration of active groups inside the membrane. We have confirmed the formation 

of these apparently unusual complexes in different cases with commercial chelating 

resins and different metal ions [24,29-32]. 

3.3. Sensing Fe(III) in aqueous media 

3.3.1 Detection and quantification of Fe(III) in water 

The immersion of the sensory discs that were cut from the sensory membrane in water 

containing Fe(III) resulted in the discs changing color from colorless to red, and the 

color development as a function of the Fe(III) concentration. 

Therefore, a Fe(III) titration curve was constructed using a set of 7 sensory discs 

after immersion overnight in Milli-Q water containing different concentrations of 

Fe(III) (i.e., ranging from 1.65x10-6 to 1.65 x10-1 M) under acidic conditions (pH = 2, 

HCl/KCl buffer). A control sensory disc that was immersed in this medium in the 

absence of Fe(III) was also prepared. Then, the discs were removed from the aqueous 

solution and allowed to dry under ambient conditions. The color development within the 

discs as the concentration of Fe(III) increased was visible and permitted the semi-

quantitative naked eye titration of Fe(III), and their UV/vis spectra allowed for the 

construction of a titration curve (Figures 4a and 4b). The limits of detection and 

quantification were 3.6x10-5 and 1.1x10-4 M, respectively.  

Increasing attention has been focused on chemical analysis based on color 

changes recorded with ubiquitous imaging devices to develop user-friendly analytical 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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procedures for in situ and real-time monitoring [33]. Therefore, digital images of the 

discs were recorded to construct a titration curve using the digital color definition (RGB 

parameters) of the sensory discs (Figure 4c; Section S4, ESI) [10,34]. The limits of 

detection and quantification were 2.0x10-5 and 6.0x10-5 M, respectively. To determine 

the applicability of the sensory material to real samples, a test sample containing a 

Fe(III) concentration of 3.31x10-4 M was prepared using tap water that was buffered at a 

pH of 2 (the concentration of Fe(III) corresponded to the sum of the added and innate 

tap water ferric ion concentration). The calibration curves that were obtained using the 

UV/vis spectra and digital pictures (RGB parameters) of the reference discs immersed 

in tap water (buffered at pH = 2; concentration ranging from 1.0x10-5 to 1.0x10-3 M) 

allowed for the calculation of the concentration of the test sample, which was in 

agreement with the real value (calculated concentration using UV/vis and RGB 

parameters of digital images: 3.26x10-4 and 3.29x10-4 M, respectively).  

The limit of detection is relatively high and higher than the US National 

Secondary Drinking Water Regulations for iron (0.3 mg/L, 5.4x10-6 M) as well as that 

reported by Gupta et al. (1.9x10-8 M [2]; 9.5 x10-7 M [3]; 5.0x10-6 M [8]) and ourselves 

(2.5x10-6 M [10], 1.3x10-7 [13]). However, the response of the sensory material could 

be tuned by modifying the molar ratio of the monomers used in the synthesis of the 

sensory membrane. For example, the response could be improved by increasing the 

molar ratio of iron receptors (Kojic acid derivative monomer (3)). 

 

Figure 4. 
 

3.3.2. Response time  

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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The response time is a key parameter for sensor performance in real-life applications. 

Therefore, the response time of the membrane immersed in solution was investigated 

using UV/vis spectroscopy to determine the time required to achieve 99% of the 

absorbance (490 nm) variation (Figure 5). This time was 20 min for a water solution 

containing an Fe(III) concentration of 5x10-3 M. This time accounts for the diffusion of 

the species into the membrane and concomitant reaction with the Kojic acid motifs. 

This time is in agreement with the time required to reach equilibrium between the two 

phases, which was previously analyzed to describe the sorption kinetics. 

 

Figure 5. 

 

3.3.3. Interference study 

The selectivity study was initially carried out according to a previous preparation 

method for the sensory material using a 1.6x10-3 M solution of monomer (3) in 

DMA/H2O (50/50). To this solution, a solution containing a broad set of cations and 

anions (see Figures S6 and S7, ESI) were added (1.6x10-2 M for each species). Red 

color development was observed for Fe(III), and the system did not exhibit a response 

to the other cations and anions (Figure 6 shows the UV/vis response to the cations and 

Figure S7, ESI, show the UV/vis response to the anions). This selectivity of the solid 

sensory membrane was confirmed both visually and by a computer vision-based 

analysis, e.g., the sensory discs yielded the same response for Fe(III) and a mixture of 

cations (Figure 6). 

Figure 6. 

http://www.sciencedirect.com/science/article/pii/S092540051630510X
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Figure 7. 

 

4. CONCLUSIONS 

We used Kojic acid, which is a natural chelating agent for iron(III), to prepare a 

colorimetric sensory polymer as a solid film (membrane). The Kojic acid derivative, 

which is chemically anchored to the polymer backbone, acted as an excellent receptor 

for Fe(III) in water media. The characterization of the sorption of Fe(III) on the 

membrane indicated that the sorption followed pseudo first order kinetics, and the 

sorption required approximately 30 min to reach equilibrium. The sorption isotherms 

are well modeled using the Langmuir equation, and the maximum sorption capacity was 

approximately 0.04 mmol/g. The complexes that were found in the solid phase are in 

good agreement with those previously identified in the aqueous phase. Colorless discs 

that were cut from the sensor membrane (8 mm diameter) for use as solid titration kits 

turned red upon contact with water solutions containing Fe(III). The color development 

permitted both visual concentration estimation using the naked eye and titration using 

the UV/vis technique. The limit of detection for Fe(III) was 3.6x10-5 M with a dynamic 

range determination of five decades (lower concentration = 1.65x10-6 M). In addition, 

images of the kits permitted titration using the color definition of the sensory discs as 

analytical input (limit of detection of 2.0x10-5 M). Therefore, the color development of 

the sensory system and the practical solid kits enabled the visual use of these materials 

by everyone regardless of their background. In addition, portable devices, such as 

http://www.sciencedirect.com/science/article/pii/S092540051630510X


Sensors and Actuators B: Chemical, 2016, 233, 120-126 
doi: 10.1016/j.snb.2016.04.040 
Link to the published article: 
http://www.sciencedirect.com/science/article/pii/S092540051630510X 

 

 

16 
 

tablets and smartphones, allow for out-of-lab quantification of target species in an in 

situ, rapid and inexpensive fashion. 
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FIGURES AND SCHEMES 
Captions 
 

Scheme 1. Synthesis of acrylic monomer (2). 

Scheme 2. Monomers and chemical structure of the sensory membrane. The picture 
shows the physical aspect of the membrane on a notebook. 

Figure 3. Sorption profiles of Fe(III) on 26.5 mg of dry membrane in 1 M KNO3, V = 
10 mL, [Fe(III)] = 1.8 µM. Red circles = profile in absence of competitive ligand, blue 
diamonds = profile in presence of pyridine dicarboxylic acid (PDCA) 0.5 mM, green 
circles = profile in presence of sodium oxalate 0.05 M. 

Figure 2. Sorption isotherm of Fe(III) on the membrane (sorbed metal ion in the solid 
phase (q) as a function of the solute concentration when the equilibrium is reached 
(Ceq)). Conditions: volume = 10 mL 0.1 M KNO3, pH 2.5, temperature = 25ºC, 36.5 mg 
of dry membrane. Gray circles: experimental points; continuous line: best fitting by 
Langmuir model. 

Figure 1. Kinetic profile of Fe(III) uptake on the membrane (sorbed metal ion in the 
solid phase (q) as a function of time (t)). Conditions: volume = 10 mL 0.1 M KNO3, pH 
= 2.5, temperature = 25ºC, [Fe(III)] = 1.34·10-4 M, 13.7 mg of dry membrane. The lines 
represent the fit obtained using a pseudo first order equation. 

Figure 4. Colorimetric determination of the Fe(III) concentration in water using sensory 
discs cut from the membrane: a) UV/vis spectra (inset: picture of the discs, left disc is 
control disc); b) UV/vis titration curve; c) titration using the RGB parameters from the 
digital image taken from the sensory materials (see inset, Figure 5a). The three 
parameters (R, G and B) defining the color of each disc were reduced to one principal 
component (PC1) by principal component analysis. Conditions: prior to each 
measurement, each disc was immersed overnight in Milli-Q water (temperature = 25ºC, 
pH = 2 -buffer HCl/KCl-) containing a Fe(III) concentration ranging from 1.65x10-6 to 
1.65 x10-1 M and then removed from the medium and dried at rt. 

Figure 5. Response time. Selected UV/vis spectra as a function of the time that a piece 
of membrane (discs, 8 mm diameter) was immersed in water (pH = 2, buffer: KCl-HCl, 
2 mL) in a UV/vis quartz cuvette upon addition of Fe(III) (concentration = 5x10-3 M). 
Inset = Absorbance (490 nm) as a function of time. 

Figure 6. Interference study. a) UV/vis absorbance variation at 483 nm for (3) in 
solution (DMAc/H2O, 50/50; pH = 2, buffer: KCl-HCl, 2 mL; [(3)] = 1.6x10-3 M) after 
addition of various cations. Each cation was added individually in a (3)/cation molar 
ratio of 1/10 (the concentration of each cation was 1.6x10-2 M). Inset: sample UV/vis 
spectra of solution (3) after addition of various cations (i.e., Fe(III), Co(II) and Hg(II)); 
and b) picture of two sensory discs after immersion overnight in water (pH = 2, buffer: 
KCl-HCl, 2 mL) containing Fe(III) ([Fe(III)] = 1 x 10-2 M) and two mixtures of cations 
(the concentration of each cation was 1 x 10-2 M).  
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Scheme 1. Synthesis of acrylic monomer (3). 
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Scheme 2. Monomers and chemical structure of the sensory membrane. The picture 
shows the physical aspect of the membrane on a notebook. 
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Figure 1. Kinetic profile of Fe(III) uptake on the membrane (sorbed metal ion in the 
solid phase (q) as a function of time (t)). Conditions: volume = 10 mL 0.1 M KNO3, pH 
= 2.5, temperature = 25ºC, [Fe(III)] = 1.34·10-4 M, 13.7 mg of dry membrane. The lines 
represent the fit obtained using a pseudo first order equation. 
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Figure 2. Sorption isotherm of Fe(III) on the membrane (sorbed metal ion in the solid 
phase (q) as a function of the solute concentration when equilibrium is reached (Ceq)). 
Conditions: volume = 10 mL 0.1 M KNO3, pH 2.5, temperature = 25ºC, 36.5 mg of dry 
membrane. Gray circles: experimental points; continuous line: best fitting by Langmuir 
model. 
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Figure 3. Sorption profiles of Fe(III) on 26.5 mg of dry membrane in 1 M KNO3, V = 
10 mL, [Fe(III)] = 1.8 µM. Red circles = profile in absence of competitive ligand, blue 
diamonds = profile in presence of pyridine dicarboxylic acid (PDCA) 0.5 mM, green 
circles = profile in presence of sodium oxalate 0.05 M. 
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Figure 4. Colorimetric determination of the Fe(III) concentration in water using sensory 
discs cut from the membrane: a) UV/vis spectra (inset: picture of the discs, left disc is 
control disc); b) UV/vis titration curve; c) titration using the RGB parameters from the 
digital image taken from the sensory materials (see inset, Figure 5a). The three 
parameters (R, G and B) defining the color of each disc were reduced to one principal 
component (PC1) by principal component analysis. Conditions: prior to each measurement, 
each disc was immersed overnight in Milli-Q water (temperature = 25ºC, pH = 2 -buffer 
HCl/KCl-) containing a Fe(III) concentration ranging from 1.65x10-6 to 1.65 x10-1 M and then 
removed from the medium and dried at rt. 
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Figure 5. Response time. Selected UV/vis spectra as a function of the time that a piece 
of membrane (discs, 8 mm diameter) was immersed in water (pH = 2, buffer: KCl-HCl, 
2 mL) in a UV/vis quartz cuvette upon addition of Fe(III) (concentration = 5x10-3 M). 
Inset = Absorbance (490 nm) as a function of time. 
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a) 

 
b) 

 

 
Figure 6. Interference study (cations). a) UV/vis absorbance variation at 483 nm of (3) 
in solution (DMAc/H2O, 50/50; pH = 2, buffer: KCl-HCl, 2 mL; [(3)] = 1.6x10-3 M) 
after addition of various cations. Each cation was added individually in a (3)/cation 
molar ratio of 1/10 (the concentration of each cation was 1.6x10-2 M). Inset: sample 
UV/vis spectra of solution (3) after addition of various cations (i.e., Fe(III), Co(II) and 
Hg(II)); and b) picture of two sensory discs after immersion overnight in water (pH = 
2, buffer: KCl-HCl, 2 mL) containing Fe(III) ([Fe(III)] = 1 x 10-2 M) and in two 
mixtures of cations (the concentration of each cation was 1 x 10-2 M). 

 

Bl
an

k
Fe

 (I
II)

La
 (I

II)
Cs

 (I
I)

Pb
 (I

I)
M

g 
(II

)
Hg

 (I
I)

Ce
 (I

II)
Ba

 (I
I)

Zr
 (I

V)
NH

4 
(I)

Ni
 (I

I)
Co

 (I
I)

Sm
 (I

II)
K 

(I)
Al

 (I
II)

Sr
 (I

I)
Li

 (I
)

Cd
 (I

I)
Rb

 (I
I)

Zn
 (I

I)
Na

 (I
)

Dy
 (I

I)
M

n 
(II

)
Bl

an
k

0.0

0.5

1.0

1.5

 

 

 

∆ 
Ab

so
rb

an
ce

Blank  

Fe(III) 

Fe(III) + (Zn(II), 
              Zr(IV), Al(III), Mn(II)) 

Fe(III) + (Co(II), Hg(II), 
               Pb(II), Cd(II)) 


	ZCXL7LDC_Kojic_acid_Manuscript_5594_edited_finalCS_1
	ZCXL7LDC_Kojic_acid_Figures_5594_edited_finalCS_2
	FIGURES AND SCHEMES
	Captions


