271 research outputs found

    Mobile genetic elements of Staphylococcus aureus

    Get PDF
    Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence

    NET Confusion

    Get PDF

    Multiple Locus Variable number of tandem repeat Analysis : a molecular genotyping tool for Paenibacillus larvae

    Get PDF
    American Foulbrood, caused by Paenibacillus larvae, is the most severe bacterial disease of honey bees (Apis mellifera). To perform genotyping of P.larvae in an epidemiological context, there is a need of a fast and cheap method with a high resolution. Here, we propose Multiple Locus Variable number of tandem repeat Analysis (MLVA). MLVA has been used for typing a collection of 209 P.larvae strains from which 23 different MLVA types could be identified. Moreover, the developed methodology not only permits the identification of the four Enterobacterial Repetitive Intergenic Consensus (ERIC) genotypes, but allows also a discriminatory subdivision of the most dominant ERIC type I and ERIC type II genotypes. A biogeographical study has been conducted showing a significant correlation between MLVA genotype and the geographical region where it was isolated

    Identification of a Novel Staphylococcus aureus Two-Component Leukotoxin Using Cell Surface Proteomics

    Get PDF
    Staphylococcus aureus is a prominent human pathogen and leading cause of bacterial infection in hospitals and the community. Community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 are highly virulent and, unlike hospital strains, often cause disease in otherwise healthy individuals. The enhanced virulence of CA-MRSA is based in part on increased ability to produce high levels of secreted molecules that facilitate evasion of the innate immune response. Although progress has been made, the factors that contribute to CA-MRSA virulence are incompletely defined. We analyzed the cell surface proteome (surfome) of USA300 strain LAC to better understand extracellular factors that contribute to the enhanced virulence phenotype. A total of 113 identified proteins were associated with the surface of USA300 during the late-exponential phase of growth in vitro. Protein A was the most abundant surface molecule of USA300, as indicated by combined Mascot score following analysis of peptides by tandem mass spectrometry. Unexpectedly, we identified a previously uncharacterized two-component leukotoxin–herein named LukS-H and LukF-G (LukGH)-as two of the most abundant surface-associated proteins of USA300. Rabbit antibody specific for LukG indicated it was also freely secreted by USA300 into culture media. We used wild-type and isogenic lukGH deletion strains of USA300 in combination with human PMN pore formation and lysis assays to identify this molecule as a leukotoxin. Moreover, LukGH synergized with PVL to enhance lysis of human PMNs in vitro, and contributed to lysis of PMNs after phagocytosis. We conclude LukGH is a novel two-component leukotoxin with cytolytic activity toward neutrophils, and thus potentially contributes to S. aureus virulence

    Transcriptomic analysis of Staphylococcus epidermidis biofilm-released cells upon interaction with human blood circulating immune cells and soluble factors

    Get PDF
    [Excerpt] Background: The colonization of indwelling medical devices by biofilm-forming bacteria is one of the major causes of healthcare-associated infections (Percival et al., 2015). Staphylococcus epidermidis, a biofilm-forming commensal bacterium that inhabits human skin and mucosae, is considered one of most important causes of medical devices-related infections, being particularly associated with the use of intravascular catheters (Mack et al., 2013). Although S. epidermidis biofilms are classically associated with the development of chronic infections (Costerton et al., 1999), the release of cells from the biofilm has been associated with onset of acute infections such as embolic events of endocarditis (Pitz et al., 2011), bacteremia, or even septicemia (Cole et al., 2016). Bloodstream infections caused by S. epidermidis are typically indolent and difficult to eradicate significantly increasing patient’s morbidity (Kleinschmidt et al., 2015) and mortality among immunocompromised (Khashu et al., 2006) and immunosuppressed patients (Bender and Hughes,1980).Inaddition,thecostsassociatedwiththediagnosisandtreatmentofthesesecondary infections is estimated to be approximately $20,000 per occurrence (Kilgore and Brossette, 2008). Henceforth, it is imperative to redefine strategies for the management of the pathologic events associated with biofilm disassembly. Since bloodstream infections are one of the most frequent complications caused by S. epidermidis biofilm disassembly (Cole et al., 2016), a comprehensive analysis of the interplay between S. epidermidis biofilm-released cells (BRC) and hosts’ blood components would be invaluable. Herein, as the first step toward the understanding of this interaction,wehavecharacterized,usingRNAsequencing(RNAseq)technology,thetranscriptome of S. epidermidis BRC upon interaction with whole human blood, polymorphonuclear, or mononuclear leukocytes and plasma.This study was funded by the Portuguese Foundation for Science and Technology (FCT) by the project with the reference FCOMP-01-012014-FEDER-041246 (EXPL/BIA-MIC/0101/2013), the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the. scope of Norte2020 - Programa Operational Regional do Norte. NC is an Investigador FCT. AT is supported by the FCT fellowship SFRH/BPD/99961/2014. The hinders had no role in study design, data collection and interpretation, or decision to submit the work for publication

    Alterations in the Staphylococcus epidermidis biofilm transcriptome following interaction with whole human blood

    Get PDF
    Staphylococcus epidermidis biofilm formation on the surface of intravenous catheters is responsible for 22% of the cases of bloodstream infections, in patients in intensive care units in the USA. The ability of S. epidermidis to withstand the high bactericidal activity of human blood is therefore crucial for systemic dissemination. To identify the genes involved in the bacterium's survival, the transcriptome of S. epidermidis biofilms, upon contact with human blood, was assessed using an ex vivo model. Our results showed an increased transcription of genes involved in biosynthesis and metabolism of amino acids, small molecules, carboxylic and organic acids, and cellular ketones. One of the striking changes observed 4 h of S. epidermidis exposure to human blood was an increased expression of genes involved in iron utilization. This finding suggests that iron acquisition is an important event for S. epidermidis survival in human blood.The authors thank Stephen Lorry at Harvard Medical School for providing CLC Genomics software. This work was funded by European Union funds (FEDER/COMPETE) and by Portuguese national funds (FCT) under the projects with reference FCOMP-01-0124-FEDER-014309 and PTDC/BIA-MIC/113450/2009), respectively. AF and VC acknowledge the financial support of individual Grants SFRH/BD/62359/2009 and SFRH/BD/78235/2011, respectively

    Genomic insights into the emergence and spread of international clones of healthcare-, community- and livestock-associated meticillin- resistant Staphylococcus aureus: Blurring of the traditional definitions

    Get PDF
    The evolution of meticillin-resistant Staphylococcus aureus (MRSA) from meticillin-susceptible S. aureus has been a result of the accumulation of genetic elements under selection pressure from antibiotics. The traditional classification of MRSA into healthcare-associated MRSA (HA-MRSA) and community-associated MRSA (CA-MRSA) is no longer relevant as there is significant overlap of identical clones between these groups, with an increasing recognition of human infection caused by livestock-associated MRSA (LA-MRSA). Genomic studies have enabled us to model the epidemiology of MRSA along these lines. In this review, we discuss the clinical relevance of genomic studies, particularly whole-genome sequencing, in the investigation of outbreaks. We also discuss the blurring of each of the three epidemiological groups (HA-MRSA, CA-MRSA and LA-MRSA), demonstrating the limited relevance of this classification

    Mobilization of genomic islands of Staphylococcus aureus by temperate bacteriophage

    Get PDF
    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus

    Bdellovibrio bacteriovorus Inhibits Staphylococcus aureus Biofilm Formation and Invasion into Human Epithelial Cells

    Get PDF
    Bdellovibrio bacteriovorus HD100 is a predatory bacterium that attacks many Gram-negative human pathogens. A serious drawback of this strain, however, is its ineffectiveness against Gram-positive strains, such as the human pathogen Staphylococcus aureus. Here we demonstrate that the extracellular proteases produced by a host-independent B. bacteriovorus (HIB) effectively degrade/inhibit the formation of S. aureus biofilms and reduce its virulence. A 10% addition of HIB supernatant caused a 75% or greater reduction in S. aureus biofilm formation as well as 75% dispersal of pre-formed biofilms. LC-MS-MS analyses identified various B. bacteriovorus proteases within the supernatant, including the serine proteases Bd2269 and Bd2321. Tests with AEBSF confirmed that serine proteases were active in the supernatant and that they impacted S. aureus biofilm formation. The supernatant also possessed a slight DNAse activity. Furthermore, treatment of planktonic S. aureus with the supernatant diminished its ability to invade MCF-10a epithelial cells by 5-fold but did not affect the MCF-10a viability. In conclusion, this study illustrates the hitherto unknown ability of B. bacteriovorus to disperse Gram-positive pathogenic biofilms and mitigate their virulence.open6
    corecore