60 research outputs found

    VEGa : a high performance vehicular Ethernet gateway on hybrid FPGA

    Get PDF
    Modern vehicles employ a large amount of distributed computation and require the underlying communication scheme to provide high bandwidth and low latency. Existing communication protocols like Controller Area Network (CAN) and FlexRay do not provide the required bandwidth, paving the way for adoption of Ethernet as the next generation network backbone for in-vehicle systems. Ethernet would co-exist with safety-critical communication on legacy networks, providing a scalable platform for evolving vehicular systems. This requires a high-performance network gateway that can simultaneously handle high bandwidth, low latency, and isolation; features that are not achievable with traditional processor based gateway implementations. We present VEGa, a configurable vehicular Ethernet gateway architecture utilising a hybrid FPGA to closely couple software control on a processor with dedicated switching circuit on the reconfigurable fabric. The fabric implements isolated interface ports and an accelerated routing mechanism, which can be controlled and monitored from software. Further, reconfigurability enables the switching behaviour to be altered at run-time under software control, while the configurable architecture allows easy adaptation to different vehicular architectures using high-level parameter settings. We demonstrate the architecture on the Xilinx Zynq platform and evaluate the bandwidth, latency, and isolation using extensive tests in hardware

    On battery recovery effect in wireless sensor nodes

    Get PDF
    With the perennial demand for longer runtime of battery-powered Wireless Sensor Nodes (WSNs), several techniques have been proposed to increase the battery runtime. One such class of techniques exploiting the battery recovery effect phenomenon claims that performing an intermittent discharge instead of a continuous discharge will increase the usable battery capacity. Several works in the areas of embedded systems and wireless sensor networks have assumed the existence of this recovery effect and proposed different power management techniques in the form of power supply architectures (multiple battery setup) and communication protocols (burst mode transmission) in order to exploit it. However, until now, a systematic experimental evaluation of the recovery effect has not been performed with real battery cells, using high accuracy battery testers to confirm the existence of this recovery phenomenon. In this paper, a systematic evaluation procedure is developed to verify the existence of this battery recovery effect. Using our evaluation procedure we investigated Alkaline, Nickel-Metal Hydride (NiMH) and Lithium-Ion (Li-Ion) battery chemistries, which are commonly used as power supplies for WSN applications. Our experimental results do not show any evidence of the aforementioned recovery effect in these battery chemistries. In particular, our results show a significant deviation from the stochastic battery models, which were used by many power management techniques. Therefore, the existing power management approaches that rely on this recovery effect do not hold in practice. Instead of a battery recovery effect, our experimental results show the existence of the rate capacity effect, which is the reduction of usable battery capacity with higher discharge power, to be the dominant electrochemical phenomenon that should be considered for maximizing the runtime of WSN applications. We outline power management techniques that minimize the rate capacity effect in order to obtain a higher energy output from the battery

    Open source model and simulator for real-time performance analysis of automotive network security

    Get PDF
    With the increasing interconnection of vehicles, security challenges have moved into focus. Attacks on in-vehicle networks can cause accidents resulting in financial damages and even loss of life. The impact of an attack can be mitigated by secure internal vehicle networks, employing authentication of ECUs and authorization of messages. However, quantifying the real-time performance of additional security measures is difficult due to the high number of nodes and messages. In this paper, we present an open source model and simulator for the evaluation of the real-time performance of automotive networks implementing security measures. Applying parameters from hardware measurements, we evaluate our model and simulator with realistic test cases and a case study. We further present application perspectives on how the open source simulator can be used in different domains for the analysis of automotive network architectures

    Fuzzy logic based energy and throughput aware design space exploration for MPSoCs

    Get PDF
    Multicore architectures were introduced to mitigate the issue of increase in power dissipation with clock frequency. Introduction of deeper pipelines, speculative threading etc. for single core systems were not able to bring much increase in performance as compared to their associated power overhead. However for multicore architectures performance scaling with number of cores has always been a challenge. The Amdahl's law shows that the theoretical maximum speedup of a multicore architecture is not even close to the multiple of number of cores. With less amount of code in parallel having more number of cores for an application might just contribute in greater power dissipation instead of bringing some performance advantage. Therefore there is a need of an adaptive multicore architecture that can be tailored for the application in use for higher energy efficiency. In this paper a fuzzy logic based design space exploration technique is presented that is targeted to optimize a multicore architecture according to the workload requirements in order to achieve optimum balance between throughput and energy of the system

    Metaheuristics “In the Large”

    Get PDF
    Many people have generously given their time to the various activities of the MitL initiative. Particular gratitude is due to Adam Barwell, John A. Clark, Patrick De Causmaecker, Emma Hart, Zoltan A. Kocsis, Ben Kovitz, Krzysztof Krawiec, John McCall, Nelishia Pillay, Kevin Sim, Jim Smith, Thomas Stutzle, Eric Taillard and Stefan Wagner. J. Swan acknowledges the support of UK EPSRC grant EP/J017515/1 and the EU H2020 SAFIRE Factories project. P. GarciaSanchez and J. J. Merelo acknowledges the support of TIN201785727-C4-2-P by the Spanish Ministry of Economy and Competitiveness. M. Wagner acknowledges the support of the Australian Research Council grants DE160100850 and DP200102364.Following decades of sustained improvement, metaheuristics are one of the great success stories of opti- mization research. However, in order for research in metaheuristics to avoid fragmentation and a lack of reproducibility, there is a pressing need for stronger scientific and computational infrastructure to sup- port the development, analysis and comparison of new approaches. To this end, we present the vision and progress of the Metaheuristics “In the Large”project. The conceptual underpinnings of the project are: truly extensible algorithm templates that support reuse without modification, white box problem descriptions that provide generic support for the injection of domain specific knowledge, and remotely accessible frameworks, components and problems that will enhance reproducibility and accelerate the field’s progress. We argue that, via such principled choice of infrastructure support, the field can pur- sue a higher level of scientific enquiry. We describe our vision and report on progress, showing how the adoption of common protocols for all metaheuristics can help liberate the potential of the field, easing the exploration of the design space of metaheuristics.UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) EP/J017515/1EU H2020 SAFIRE Factories projectSpanish Ministry of Economy and Competitiveness TIN201785727-C4-2-PAustralian Research Council DE160100850 DP20010236

    Security in automotive networks : lightweight authentication and authorization

    Get PDF
    With the increasing amount of interconnections between vehicles, the attack surface of internal vehicle networks is rising steeply. Although these networks are shielded against external attacks, they often do not have any internal security to protect against malicious components or adversaries who can breach the network perimeter. To secure the in-vehicle network, all communicating components must be authenticated, and only authorized components should be allowed to send and receive messages. This is achieved through the use of an authentication framework. Cryptography is widely used to authenticate communicating parties and provide secure communication channels (e.g. Internet communication). However, the real-time performance requirements of in-vehicle networks restrict the types of cryptographic algorithms and protocols that may be used. In particular, asymmetric cryptography is computationally infeasible during vehicle operation. In this work, we address the challenges of designing authentication protocols for automotive systems. We present Lightweight Authentication for Secure Automotive Networks (LASAN), a full life-cycle authentication approach. We describe the core LASAN protocols and show how they protect the internal vehicle network while complying with the real-time constraints and low computational resources of this domain. By leveraging on the fixed structure of automotive networks, we minimize bandwidth and computation requirements. Unlike previous work, we also explain how this framework can be integrated into all aspects of the automotive product life cycle, including manufacturing, vehicle maintenance and software updates. We evaluate LASAN in two different ways: Firstly, we analyze the security properties of the protocols using established protocol verification techniques based on formal methods. Secondly, we evaluate the timing requirements of LASAN and compare these to other frameworks using a new highly modular discrete event simulator for in-vehicle networks, which we have developed for this evaluation

    Decentralized Diagnosis of Permanent Faults in Automotive E/E Architectures

    No full text
    Abstract-This paper presents a novel decentralized approach for the diagnosis of permanent faults in automotive Electrical and Electronic (E/E) architectures. Both, the safety-critical realtime requirements and the distributed nature of these systems make fault tolerance in general and fault diagnosis in particular a crucial and challenging issue. At the same time, high unit numbers in manufacturing add cost efficiency as an important criterion during system design, which is conflicting with the use of often expensive explicit fault diagnosis hardware. To address these challenges, we propose a diagnosis framework that consists of two stages. In the first diagnosis determination stage, potential fault scenarios, such as defective Electronic Control Units (ECUs), are investigated to obtain a set of diagnosis functions. Specific diagnosis functions are used for each component in the network at runtime to determine whether a certain fault scenario is present. In the second diagnosis optimization stage, an optimization of diagnosis functions is proposed to determine trade-offs between diagnosis times and the number of monitored message streams. Experimental results based on 100 synthetic test cases give evidence of the feasibility and efficiency of the presented framework. Finally, an automotive case study demonstrates the practicability and details of our fault diagnosis approach
    • …
    corecore