66 research outputs found

    Feature-Based Diversity Optimization for Problem Instance Classification

    Full text link
    Understanding the behaviour of heuristic search methods is a challenge. This even holds for simple local search methods such as 2-OPT for the Traveling Salesperson problem. In this paper, we present a general framework that is able to construct a diverse set of instances that are hard or easy for a given search heuristic. Such a diverse set is obtained by using an evolutionary algorithm for constructing hard or easy instances that are diverse with respect to different features of the underlying problem. Examining the constructed instance sets, we show that many combinations of two or three features give a good classification of the TSP instances in terms of whether they are hard to be solved by 2-OPT.Comment: 20 pages, 18 figure

    Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.

    Get PDF
    Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to their theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed time budget. We follow this approach and present a fixed budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1 + 1) EA and (1 + λ) EA algorithms for the TSP in a smoothed complexity setting and derive the lower bounds of the expected fitness gain for a specified number of generations

    Maximizing the information throughput of ultra-wideband fiber-optic communication systems

    Get PDF
    Maximized information rates of ultra-wideband (typically, beyond 100~nm modulated bandwidth) lumped-amplified fiber-optic communication systems have been thoroughly examined accounting for the wavelength dependencies of optical fiber parameters in conjunction with the impact of the inelastic inter-channel stimulated Raman scattering (SRS). Three strategies to maximize point-to-point link throughput were proposed: optimizations of non-uniformly and uniformly distributed launch power per channel and the optimization based on adjusting to the target 3 dB ratio between the power of linear amplified spontaneous emission and nonlinear interference noise. The results clearly emphasize the possibility to approach nearly optimal system performance by means of implementing pragmatic engineering sub-optimal optimization strategies

    When is it Beneficial to Reject Improvements?

    Get PDF
    We investigate two popular trajectory-based algorithms from biology and physics to answer a question of general significance: when is it beneficial to reject improvements? A distinguishing factor of SSWM (Strong Selection Weak Mutation), a popular model from population genetics, compared to the Metropolis algorithm (MA), is that the former can reject improvements, while the latter always accepts them. We investigate when one strategy outperforms the other. Since we prove that both algorithms converge to the same stationary distribution, we concentrate on identifying a class of functions inducing large mixing times, where the algorithms will outperform each other over a long period of time. The outcome of the analysis is the definition of a function where SSWM is efficient, while Metropolis requires at least exponential time

    A Socio-Ecological-Technical Perspective: How has Information Systems Contributed to Solving the Sustainability Problem

    Get PDF
    This literature review extends the dominant view of Information Systems (IS) as socio-technical. We establish a novel view of IS as socio-ecological-technical systems to steer and unite IS research and scholarship to co-create digitally transformed sustainable futures. Without a commitment to reducing carbon dioxide equivalent emissions (CO2e), we will reach a tipping point leading to large-scale, dangerous, and irreversible impacts on climate, human liveability, and survivability. Digital technology can potentially mediate human activities to reduce CO2e, but its production, utilisation, and disposal are multiple sources of CO2e. In response to the conference theme “Co-creating Sustainable Digital Futures”, this paper systematically reviews the IS research over the last twelve years from the socioecological- technical and Environmentally Sustainable Digital Transformation frameworks, with a focus on CO2e. Our holistic approach reveals emerging themes, current gaps and research opportunities, thus contributing to IS knowledge building and proposing future studies in this socio-ecological-technical domain

    A feature-based comparison of local search and the Christofides algorithm for the travelling salesperson problem

    Get PDF
    Understanding the behaviour of well-known algorithms for classical NP-hard optimisation problems is still a difficult task. With this paper, we contribute to this research direction and carry out a feature based comparison of local search and the well-known Christofides approximation algorithm for the Traveling Salesperson Problem. We use an evolutionary algorithm approach to construct easy and hard instances for the Christofides algorithm, where we measure hardness in terms of approximation ratio. Our results point out important features and lead to hard and easy instances for this famous algorithm. Furthermore, our cross-comparison gives new insights on the complementary benefits of the different approaches.Samadhi Nallaperuma, Markus Wagner, Frank Neumann, Bernd Bischl, Olaf Mersmann, Heike Trautmannhttp://www.sigevo.org/foga-2013

    Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes

    Get PDF
    We present a novel methodology for optimizing fiber optic network performance by determining the ideal values for attenuation, nonlinearity, and dispersion parameters in terms of achieved signal-to-noise ratio (SNR) gain from digital backpropagation (DBP). Our approach uses Gaussian process regression, a probabilistic machine learning technique, to create a computationally efficient model for mapping these parameters to the resulting SNR after applying DBP. We then use simplicial homology global optimization to find the parameter values that yield maximum SNR for the Gaussian process model within a set of a priori bounds. This approach optimizes the parameters in terms of the DBP gain at the receiver. We demonstrate the effectiveness of our method through simulation and experimental testing, achieving optimal estimates of the dispersion, nonlinearity, and attenuation parameters. Our approach also highlights the limitations of traditional one-at-a-time grid search methods and emphasizes the interpretability of the technique. This methodology has broad applications in engineering and can be used to optimize performance in various systems beyond optical networks

    Techniques for applying reinforcement learning to routing and wavelength assignment problems in optical fiber communication networks

    Get PDF
    We propose a novel application of reinforcement learning (RL) with invalid action masking and a novel training methodology for routing and wavelength assignment (RWA) in fixed-grid optical networks and demonstrate the generalizability of the learned policy to a realistic traffic matrix unseen during training. Through the introduction of invalid action masking and a new training method, the applicability of RL to RWA in fixed-grid networks is extended from considering connection requests between nodes to servicing demands of a given bit rate, such that lightpaths can be used to service multiple demands subject to capacity constraints. We outline the additional challenges involved for this RWA problem, for which we found that standard RL had low performance compared to that of baseline heuristics, in comparison with the connection requests RWA problem considered in the literature. Thus, we propose invalid action masking and a novel training method to improve the efficacy of the RL agent. With invalid action masking, domain knowledge is embedded in the RL model to constrain the action space of the RL agent to lightpaths that can support the current request, reducing the size of the action space and thus increasing the efficacy of the agent. In the proposed training method, the RL model is trained on a simplified version of the problem and evaluated on the target RWA problem, increasing the efficacy of the agent compared with training directly on the target problem. RL with invalid action masking and this training method outperforms standard RL and three state-of-the-art heuristics, namely, k shortest path first fit, first-fit k shortest path, and k shortest path most utilized, consistently across uniform and nonuniform traffic in terms of the number of accepted transmission requests for two real-world core topologies, NSFNET and COST - 239. The RWA runtime of the proposed RL model is comparable to that of these heuristic approaches, demonstrating the potential for real-world applicability. Moreover, we show that the RL agent trained on uniform traffic is able to generalize well to a realistic nonuniform traffic distribution not seen during training, thus outperforming the heuristics for this traffic. Visualization of the learned RWA policy reveals an RWA strategy that differs significantly from those of the heuristic baselines in terms of the distribution of services across channels and the distribution across links

    Improved Fixed-Budget Results via Drift Analysis

    Full text link
    Fixed-budget theory is concerned with computing or bounding the fitness value achievable by randomized search heuristics within a given budget of fitness function evaluations. Despite recent progress in fixed-budget theory, there is a lack of general tools to derive such results. We transfer drift theory, the key tool to derive expected optimization times, to the fixed-budged perspective. A first and easy-to-use statement concerned with iterating drift in so-called greed-admitting scenarios immediately translates into bounds on the expected function value. Afterwards, we consider a more general tool based on the well-known variable drift theorem. Applications of this technique to the LeadingOnes benchmark function yield statements that are more precise than the previous state of the art.Comment: 25 pages. An extended abstract of this paper will be published in the proceedings of PPSN 202
    • …
    corecore