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Multi-fractal Geometry of Finite Networks of Spins: Nonequilibrium dynamics
beyond Thermalization and Many-Body-Localization

Paul Bogdan and Edmond Jonckheere
Ming Hsieh Department of Electrical Engineering,

University of Southern California, Los Angeles, CA 90089

Sophie Schirmer
College of Science (Physics), Swansea University, Singleton Park, Swansea SA2 8PP, UK

Quantum spin networks overcome the challenges of traditional charge-based electronics by encod-
ing information into spin degrees of freedom. Although beneficial for transmitting information with
minimal losses when compared to their charge-based counterparts, the mathematical formalization
of the information propagation in a spin(tronic) network is challenging due to its complicated scaling
properties. In this paper, we propose a fractal geometric approach for unraveling the information-
theoretic phenomena of spin chains and rings by abstracting them as weighted graphs, where the
vertices correspond to single spin excitation states and the edges represent the information theoretic
distance between pair of nodes. The weighted graph exhibits a complex self-similar structure. To
quantify this complex behavior, we develop a new box counting inspired algorithm which assesses
the mono-fractal versus multi-fractal properties of quantum spin networks. Mono and multi fractal
properties are in the same spirit as, but different from, Eigenstate Thermalization Hypothesis (ETH)
and Many-Body Localization (MBL), respectively. To demonstrate criticality in finite size systems,
we define a thermodynamics inspired framework for describing information propagation and show
evidence that some spin chains and rings exhibit an informational phase transition phenomenon,
akin to the MBL.

I. INTRODUCTION

A. Motivation–Spintronics networks

Many fundamental particles such as electrons, pro-
tons and certain atomic nuclei exhibit a fundamental
quantum property called spin. Spin degrees of free-
dom have played an important role since the discovery
of nuclear magnetic resonance [23] and electron spin res-
onance [3], which have become essential tools for charac-
terizing chemical structure, material properties and bio-
medical imaging [12, 25, 27]. More recently, spin degrees
of freedom have been in the spotlight again as potential
carriers of quantum information, and the foundation of
quantum spintronics [2].

Conventional electronics, while powerful, also has
drawbacks. Electrical resistance encountered by moving
electrons generates heat, wasting energy and limiting in-
tegration densities and data processing speeds in conven-
tional semiconductor devices [33]. Spintronics in its most
basic form is about exploiting spin degrees of freedom,
usually of electrons, to encode, process, store and trans-
fer information. Encoding information in spin degrees
of freedom such as excitations of a spin network opens
up many possibilities [19, 21], where spintronics devices
offer benefits such as generally long coherence lifetimes
of spins at low temperatures. Although there are many
technological challenges that remain to be solved, consid-
erable efforts are currently under way to realize various
types of spintronic devices [2].

The spintronic property that propagation happens
without matter or charge transport makes spintronic net-

works potentially attractive for more efficient on-chip in-
terconnectivity via “spin channels” even for classical in-
formation processing. In this context one of the most
important questions is the capacity of a spin(tronic) net-
work for information transport or teleportation of quan-
tum states between nodes in the network. The trans-
port can happen under intrinsic dynamics, but in order
to make the transport more efficient, couplings in spin
chains can be “engineered” to achieve, at the limit, per-
fect state transfer between end points [10, 11, 20]. For
example, a chain with nearest-neighbor couplings satis-
fying [11]

Jk,k+1 = 1
2

√
k(N − k), k = 1, . . . , N − 1, (1)

achieves this objective [11]. Rings can be biased to
“quench” the ring to a chain to favor transfer to a par-
ticular spin [19, 22].

One measure introduced to capture the intrinsic ability
of a quantum network to transport information between
nodes through the propagation of excitations is Informa-
tion Transfer Fidelity (ITF) [15–17, 19, 22]. Broadly, it
is an easily computable upper bound on the maximum
achievable probability with which an excitation can be
successfully propagated from one node to another in the
network.

The ITF induces a (pra)metric [19, Sec. 4.1] for the
spin network that endows it with an information topol-
ogy. This information topology of the spin network gen-
erally differs substantially from the physical geometry of
the network [15].
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B. Mono and multi-fractals in spintronics networks

With very high order metric network graphs comes
the question of scaling of their properties. For example,
a network might be negatively curved in the very large
scale sense of Gromov, but have different local curvature
properties. Referring more specifically to spin networks,
a device that has a cluster of excited spins might look like
thermalized at a low scale, while the same cluster rather
looks like localized at a larger scale. The present paper
essentially addresses such questions. The essential tool is
that of multi-fractal analysis. We show that the node-to-
node interactions in such “symmetric” spin networks as
long chains and rings exhibit self-similarity characterized
by a narrow fractal spectrum, indicating mono-fractal
behavior, consistent with ETH, Eigenstate Thermaliza-
tion Hypothesis [37][38][39]. Shorter chains tend to have
broader fractal spectra. However, the multi-fractal prop-
erty takes its full significance when the chain or the ring
is manipulated—in a way that affects symmetry or trans-
lation invariance—to favor specific transmissions, consis-
tently with MBL, Multi-Body Localization [37].

While the phenomena that our fractal analysis expose
bear similarity with ETH and MBL, they are not strictly
speaking ETH and MBL. The chief difference can be sum-
marized as ETH and MBL being equilibrium phenomena,
whereas the phenomena we here expose are nonequilib-
rium phenomena. This comparison is made precise in
Sec. III E.

C. Paper outline

The paper is organized as follows. We begin, in Sec. II,
with the information geometry embedding of quantum
spin networks. We provide the basics of the mathemat-
ical description of the Information Transfer Fidelity be-
tween quantum spin excitation states. Building on this
background, in Sec. III, we present the multi-fractal char-
acteristics of this information geometry embedding and
a greedy algorithm for investigating the multi-fractality
of quantum spin networks, along with a novel box count-
ing measure different from the popular one [29]. We also
compare our nonequilibrium approach with such equi-
librium procedures as Anderson localization and strong
multi-fractal Multi-Body Localization. In Sec. VI, we at-
tempt to define a transition from thermalization to local-
ization [37][38][39]. In the next two sections, IV and V,
we detail our multi-fractal analysis of quantum chains
and quantum rings, respectively, under various network
sizes and various manipulations to favor some selective
transfers. We conclude the paper, in Sec. VII, by dis-
cussing the deeper significance of our results, outlining
our main findings, and indicating several future research
directions.

II. INFORMATION GEOMETRY EMBEDDING
OF SPIN NETWORKS

If we encode information in the states of a quantum
system such as a network of N coupled spin-1

2 particles,
then the transfer of information between quantum states
is governed by the Schrödinger equation,

ı~ d
dt |ψ(t)〉 = H|ψ(t)〉, |Ψ(0)〉 = |i〉, (2)

or a suitable open-system generalization [7]. In the pre-
ceding, |i〉 denotes the state where the only single exci-
tation in the network is on spin i. The evolution from
initial state |i〉 is characterized by a Hamiltonian H, a
Hermitian operator with eigendecomposition

H =

N̄∑
n=1

λnΠn, N̄ ≤ N, (3)

where the λn’s are the (distinct) real eigenvalues and
the Πn’s are the corresponding projectors onto the cor-
responding eigenspaces. The problem of capturing the t∗

that yields maximum fidelity supt≥0 |〈j| exp(−ıHt/~)|i〉|
in the temporal evolution of a given input state |i〉 is com-
plicated; for this reason, we derive an easily computable
upper bound on the probability of transfer of informa-
tion, irrespective of the time it takes, to another state |j〉
in a network governed by the Hamiltonian H,

sup
t≥0
|〈j| exp(−ıHt/~)|i〉|2 ≤ pmax(i, j) :=

N̄∑
k=1

|〈j|Πk|i〉|2.

(4)
Conditions for attainability of the bound in homogeneous
chains and rings are derived in [15] and [19], respectively.

Taking the logarithm of the transition probability, we
can define an Information Transfer Fidelity (ITF) “dis-
tance”

d(i, j) = − log pmax(i, j). (5)

Note that pmax(i, i) = 1 for any state |i〉 as
∑N̄
k=1 Πk is

a resolution of the identity, and also that pmax(i, j) =
pmax(j, i). Hence d(i, i) = 0 and d(i, j) = d(j, i) ≥ 0,
so that d(·, ·) is a symmetric prametric [1, p. 23]. Al-
though this prametric need not be separating [1, p. 23],
that is, d(i, j) = 0 need not imply i = j as it happens for
anti-podal points of N even spin rings, the latter is easily
fixed by identifying those d(i, j) = 0 points. After this
identification, the resulting semi-metric in general does
not satisfy the triangle inequality, but for certain types
of homogeneous networks it has been shown to induce
a proper metric [16, 19]. For the purposes of our anal-
ysis here a semi-metric (which by definition satisfies all
axioms except the triangle inequality) is sufficient. To
make the exposition more crisp, we will from here on,
with a slight abuse of language, refer to d(·, ·) as deter-
mined by Eq. (5) as a distance.

In what follows, we set forth a fractal geometrical ap-
proach to the spin network in the sense that the informa-
tion interactions within the spin network are represented
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as a weighted graph G = (V, E), where the vertices rep-
resent spin excitation states and the edges denote their
information-theoretic semi-metric.

Although our approach and the mathematical tech-
niques employed are general and can be applied to any
spin network, in this work we focus on simple networks
such as linear arrangements (chains) or circular arrange-
ments (rings) of spins with nearest-neighbor interactions,
for which the J-coupling matrix is either tridiagonal
(chain) or circulant (ring). For a network with uni-
form coupling all non-zero entries in the J matrix are
the same, and we can choose units such that they are 1.
More generally, we can always choose units such that the
maximum coupling strength is 1. If the dynamics of the
network are restricted to the single excitation subspace
then the Hamiltonian on this subspace is determined by
the J-coupling matrix; for Heisenberg coupling there are
additional non-zero elements on the diagonal, while the
diagonal elements are zero for XX-type coupling [6].

A. Extreme cases of thermalization and
localization

The ITF between nodes i and j in a network can be
physically interpreted as follows. If we create a local ex-
citation at node i at t = 0, by flipping the ith spin in the
network, then the ITF pmax(i, j) is the maximum prob-
ability of excitation of spin j that can be observed as a
result for any t ≥ 0. In the special case when an ex-
citation at node i remains localized at node i, we have
pmax(i, j) = δij . More generally, if an excitation remains
confined to a subset nodes, e.g., in the case of Many Body
Localization (MBL), then the maximum transition prob-
ability to all other nodes should be 0. In the opposite
case of thermalization, the initial excitation will spread
over the entire network and we expect pmax(i, j) to be
the same for all j 6= i. However, there are many cases in-
between these two extremes, as will be shown in Sec. VI.

III. FRACTAL ANALYSIS

One important characteristic exhibited by the infor-
mation distance graph representation of spin networks is
the self-similarity of the node-to-node interactions. In
mathematical context, the self-similarity implies that an
object (process) is exactly or approximately similar to
a subcomponent under the magnification operation (the
whole resemblance in shape to subcomponents). Fig. 1
shows a visual representation of the information distance
for spin chains of size N = 105 and N = 150, respec-
tively. Although different network sizes exhibit different
spatial interaction patterns, the metric graph represen-
tation is not entirely irregular under the magnification
operation; rather it exhibits repetition and symmetry—
there are information valleys surrounded by hill tops that
seem to repeat almost identically across space, yet are
not exactly identical. From a mathematical perspective,

we know that this irregularity cannot be understood by
simply defining the embedding dimension as the number
of variables and coordinates as considered in [17], but
rather calls for quantifying the dimension using multi-
fractal geometry [26].

A. Information distance mapping

To investigate the multi-fractal characteristics of spin
networks, we adopt the following strategy. As shown
in Fig. 2, after the metric mapping, the information
metric-based graph representation of the spin network
can also be seen as a map of contour lines (isolines),
where two nodes connected by an information distance
(weight) less than or equal to d(i, j) belong to an is-
land (bounded by a closed contour line) encompassing
all nodes within the same d(i, j) distance. Second, we
construct a graph-based box-covering renormalization in-
spired method [26, 28], which aims at covering the metric
graph with a minimum number of boxesBk(ε) of radius [?
] ε = d(i, j) for a predefined set of distances d(i, j). This
procedure records first the unique magnitudes of the ex-
hibited weights (i.e., radii d(i, j)) in the graph and for
each such magnitude finds the minimum number of boxes
required to cover all nodes in the graph. To minimize
the computational (search) time for the minimum num-
ber of boxes, we use a greedy heuristic, which for each
magnitude of the box prunes the original weighted graph
by removing the edges that exceed the magnitude and
clusters the nodes that are connected by weighted edges
smaller than the current magnitude. The algorithm then
proceeds by analyzing and covering each cluster in de-
scending order of their size (number of nodes). Knowing
the number of boxes required to cover the weighted graph
for each magnitude of the box allows us to investigate the
multi-fractality and determine (estimate) the generating
function of the counting measure as a function of the box
radius.

Note that nodes that appear to be close to each other
in the spin network domain representation may belong
to different islands of concentration as a function of the
adopted metric (e.g., information transfer distance). For
instance, while nodes 1 and 2 are adjacent to each other
in the original spin network (see Fig. 2), in the distance-
based representation they may be further apart from each
other. Although in Fig. 2 and throughout our current
analysis we used only the information transfer metric
defined above, the mathematical framework can be ap-
plied to other information-theoretic metrics and can be
extended to analyze weighted graphs that can be gener-
ated by spin network interactions over time.
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B. Node counting measure

The multi-fractal analysis rests on a novel node (count-
ing) measure defined as follows:

µ[Bk(ε)] =
Nk(ε)

N
= pk(ε), (6)

where ε represents the magnitude of the information dis-
tance, Bk(ε) = {` ∈ V : d(k, `) ≤ ε} denotes a ball
of radius ε centered in node k ∈ V and of ITF radius
ε, N is the total number of nodes in the spin network
or weighted graph G, and Nk(ε) denotes the number of
nodes inside the ball Bk(ε) of ITF radius ε. To put it
in other words, pk(ε) represents the probability of find-
ing a node ` in the ball Bk(ε). Of note, this probability
satisfies:

∑
k[pk(ε)q]q=1 = 1 and

∑
k[pk(ε)q]q=0 = N , re-

spectively. This counting measure bears similarities with
and extends the multi-fractal formalism presented in [9]
such that the mass property is replaced by the counting of
nodes covered by a ball of a certain radius on the graph.
A similar strategy can be generalized to hypergraphs, but
this is left for future work.

For a multi-fractal graph structure, the node counting
measure satisfies the following relationship:

µ[Bk(ε)] = ck,αkε
αk , as ε→ 0, (7)

where αk denotes the Lipschitz-Hölder exponent and
ck,αk is a coefficient that depends on the box and the
Lipschitz-Hölder exponent αk. The Lipschitz-Hölder ex-
ponent can be defined for any measure µ and quantifies
the singularity of the measure, here the singularity of the
informational geometry.

The partition function can be expressed as:

Z(q, ε) =
∑
k

{µ[Bk(ε)]}q =
∑
k

{ck,αkεαk}q, (8)

where q ∈ (−∞,∞) is a moment order and the sum-
mation is upper bounded by N representing the total
number of boxes of size ε. Note that if − logµ[Bk(ε)] can
be interpreted as an energy Ek, then q ≥ 0 can be inter-
preted as an inverse thermal energy , β = 1/kBT , where
kB is the Boltzmann constant and T the absolute tem-
perature. The partition function then acquires a classical
thermodynamical interpretation

∑
k e
−βEk , from which

phase transition can already be seen from the specific
heat capacity curve of Fig. 5 (b). Following this ther-
modynamic analogy, the free energy and the specific
heat can be expressed as F (q, ε) = −ln[Z(q, ε)]/ln[ε] and
C(q, ε) = −∂2F (q, ε)/∂q2 [18], respectively.

By performing a histogram-like analysis (i.e., sort-
ing and counting all terms corresponding to a particu-
lar Lipschitz-Hölder exponent α), the partition function
takes the form:

Z(q, ε) =
∑
α

εqα
∑
k∈Vα

cqk,α, (9)

where Vα represents the subset of vertices characterized
by a Lipschitz-Hölder exponent α.

To manipulate the second sum, we define the multi-
fractal spectrum f(α) to be the Hausdorff dimension of
the set Vα. Recall that the Hausdorff dimension of a set
Vα is the unique dimension dH such that the Hausdorff
measure in dimension d at scale ε,

HdH
ε = inf

diam(Bk) < ε
∪kBk ⊇ Vα

∑
k

(diam(Bk))
dH ,

is finite as ε ↓ 0. We attempt to write H
f(α)
ε ∼ εf(α)×nα,

where nα is the number of subsets in the covering. The

finiteness of H
f(α)
ε as ε ↓ 0 implies that f(α) ∼ ε−f(α);

more precisely,

nα = number of balls of radius ε = w(α)ε−f(α),

with f(α) denoting the multi-fractal spectrum. It pro-
vides the distribution of the α’s. Taking the spectrum
f(α) to be narrowly distributed yields mono-fractality;
taking it more spread yields multi-fractality.

Combining these derivations, the partition function be-
comes

Z(q, ε) =
∑
α

b(q, α)w(α)εqα−f(α), (10)

where b(q, α) = n−1
α

∑
k∈Vα c

q
k,α is a coefficient that de-

pends on the number of balls of size ε required for cover-
ing the graph embedding.

C. Mono-Fractal versus Multi-Fractal Distribution

The exponents of ε in Eq. (10) suggest to operate the
Legendre transformation

τ(q) = qα− f(α) (11)

and look at the partition function in terms of the moment
exponent q,

Z(q, ε) =
∑
k

{µ[Bk(ε)]}q = g(q)ετ(q), (12)

where τ(q) is called the mass exponent function and is
used to quantify the scaling properties of the partition
function. As an alternative definition of mono versus
multi-fractality, if the mass exponent τ(q) in Eq. (11)
is a linear function of the q-exponent, then we call the
distribution of node measure µ[Bk(ε)] to be mono-fractal.
This typically happens when f(α) is δ-distributed. On
the other hand, if the mass exponent τ(q) is a nonlinear
function of the q-exponent, then we call the distribution
of node measure µ[Bk(ε)] to be multi-fractal.

D. Generalized Hurst Exponent

The generalized Hurst exponent for time-series [5] mea-
sures is adapted to measures defined on graphs, with the
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objective of quantifying the roughness of the communi-
cation landscape. Following that thread, the generalized
Hurst exponent H(q) for the measure µ defined on the
graph G is defined as

(
1

N

∑
k

µ[Bk(ε)]q

)1/q

= εH(q).

Technically, H(q) provides the scaling of the q-order
moments of the probability measure µ. The key in-
sight coming from self-similarity of measure µ is to set
Nε = constant, say, 1. Then the above becomes

∑
k

µ[Bk(ε)]q = εqH(q)−1.

Comparing this with the definition of τ(q) provided
by (12) yields

τ(q) = qH(q)− 1. (13)

The mass exponent function τ(q) is also related to the
generalized dimension function D(q) through the follow-
ing equation: τ(q) = (q − 1)D(q).

Based on the above-mentioned arguments, a linear de-
pendence of the mass exponent τ(q) implies that the gen-
eralized Hurst exponent H(q) = H is independent of the
q-dependent exponents. In contrast, a nonlinear depen-
dence of the mass exponent τ(q) implies that the gen-
eralized Hurst exponent will also exhibit a nonlinearity
with varying exponents q.

Investigation of the generalized Hurst exponent H(q)
is motivated by the need to quantify the spatial hetero-
geneity that may exist in an information metric based
representation. Simply speaking, we aim to study how
small and large fluctuations across all node interactions
contribute to particular patterns that may appear over
multiple scales and influence the dependence of H(q) as
a function of order q. Consequently, in our framework,
the generalized Hurst exponent represents a mathemati-
cal approach for investigating the scaling properties and
measuring the degree of heterogeneity of the graph mo-
tifs over multiple spatial scales. More precisely, if the
analysis of the qth-order moments of the distribution of
information graph motifs shows no dependence on the
generalized Hurst exponent with the order of the mo-
ment q, then the informational graph is considered ho-
mogeneous and mono-fractal. In contrast, if the gener-
alized Hurst exponent exhibits significant variation over
a wide range of q orders, then the information graph is
considered to be heterogeneous and multi-fractal. This
multi-fractal structure (of the information based embed-
ding of spin chains) can be understood as a divergence
in terms of scaling trends between the short range (small
fluctuations in ITF) and long-range (large fluctuations)
ITF magnitudes.

E. Comparison with Multi-fractal Anderson
Localization

Fluctuations around the metal-insulator criticality in
Anderson localization is known to be multifractal [29].
While the fundamental mathematical techniques utilized
in the latter are undoubtedly similar to ours, here, it
is applied to a situation different from, although in the
same spirit as, Anderson localization. First and most
importantly, we do not deal with Anderson localization
in the sense of fast spatial decay of eigenstate components
ψ` 6=k away from site k; we rather deal with the number
of sites ` within ITF pmax ≈ 1− ε, away from k or within
distance d(k, `) ≈ ε from k.

To make the comparison crisp, consider the partition
function shared by both approaches: Z(q) =

∑
k µ

q
k, with

µk = ck,αkε
αk . In [29, Sec. III.A], the measure µk is∑

`∈Boxk(ε) |ψ`|2 ∼ εαk for ` in the box centered at site

k of physical size ε, while here µk is the relative number
Nk(ε)/N ∼ εαk of sites ` within the box of ITF size ε
centered at k.

Clearly because of the discrepancy in the definition of
the αk’s, the multifractal spectrum f(α) of localization
cannot be expected to be the same as ours.

More specifically, the preceding comparison reveals
that we are not interested in the degree of localization∑
`∈Boxk(ε) |ψ`|2 of the equilibrium eigenstates of the sys-

tem. Rather we are interested in how an excitation |k〉
localized at a single node k, which corresponds to a highly
non-equilibrium state, propagates through the system,
and its probability of ’touching’ another node ` later.
In the case of Anderson localization, a local excitation
would not propagate much, so at best there would be a
very small probability of transfer to nearby nodes and
none for transfer to distant nodes, and the ITF graph
would be the disconnected union of many small order
subgraphs of low ITF edges.

F. Comparison with strong multifractality
MBL [36]

There is one case where the traditioonal localization
yields results close to our concept of localization. The
strong multi-fractality MBL of [36, Eq. 18] relies on the
partition function

∑
` |〈ψk|σNZ |ψ`〉|2q and yields a spec-

trum f(α) close to what has been observed in some
cases. Looking at Fig. 6(d,f), it appears that rings of size
N = 105 and N = 500 show a Multi-Body-Localization
transition as the bias approaches 50. On the other hand,
Fig. 5(f) reveals that Multi-Body-Localization only oc-
curs for some ring size.
IV. MULTI-FRACTAL ANALYSIS OF CHAINS

One important spin network topology is represented
by spin chains (see top left hand side of Figure 2). To
investigate the geometrical properties of a chain of spins,
we use the information-metric-based mapping (see Fig. 2)
and estimate the partition function as a function of the
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order q of higher order moments as described in eq. (12).
The observed statistical self-similarity (see Figure 1) of
the spin network translates into a power law relationship
of the partition function and allows us to estimate the
generalized Hurst exponent H(q) and the multi-fractal
spectrum f(α).

Fig. 3(a) shows the generalized Hurst exponent as a
function of order q for several spin chain lengths (i.e.,
N = 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, and
150). The generalized Hurst exponent H(q) displays a
sigmoidal shape irrespective of the spin chain length.
Similar sigmoidal shapes are observed for numerous
other spin chain lengths. Fig. 3(d) summarizes the
H(q) vs q dependency for spin chain lengths of N =
700, 708, 718, 726, 732, 738, 742, 750, 756, 760, 768, 772, 786
and 796. This sigmoidal pattern shows that the informa-
tion metric graph, having a heterogeneous architecture,
is better characterized by multi-fractal geometric tools.
Generally speaking, this implies that a single fractal
dimension is insufficient to model the (heterogeneous)
interactions and information transmission / propagation
in the spin chain.

All of chain lengths N considered above are such that
all eigenvectors of the (single excitation subspace) Hamil-
tonian are completely delocalized, i.e., all eigenvectors
have non-zero overlap with all nodes.

In addition to the sigmoidal shape, we also observe
that for some lengths of the spin chain the generalized
Hurst exponent exhibits a much more complex nonlin-
ear dependency as a function of the qth order moment
(see Figure 5(a) summarizing the analysis for spin chain
lengths of N = 105, 115, 119, 129, and 149).

We also note that these particular spin chain lengths
exhibit higher generalized Hurst exponents than those in
Fig. 3(a) and 3(d). This suggests that some spin chains
exhibit a pronounced persistent behavior, i.e., a long in-
teraction is likely to favor an even longer one, while others
tend to display an anti-persistant behavior, interleaving
short with long interactions. From a practical perspec-
tive, it would be interesting to investigate the information
processing / transmission properties of these two classes
of spin chains on real devices, which may show some to
be more suitable for information transmission while oth-
ers might be better suited for robust information storage
or parallel processing.

An alternative strategy for describing the local self-
similar (scaling) properties of the information graph
and quantify the degree of heterogeneity is to estimate
the multi-fractal spectrum. From a mathematical per-
spective, the multi-fractal spectrum represents the set
of Lipschitz-Hölder exponents (fractal dimensions) and
their likelihood of appearance as dictated by the mix-
ture of locally self-similar motifs in the informational
graph. Consequently, by estimating and analyzing the
multi-fractal spectrum we can learn the existing domi-
nance of some Lipschitz-Hölder exponents over others.
The Lipschitz-Hölder exponent quantifies the local singu-
larities and locates the abrupt changes in the curvature of
information graph embedding. More precisely, the max-

imum of the multi-fractal spectrum represents the dom-
inant fractal dimension while the width of the spectrum
is a measure of the heterogeneity richness (range of frac-
tal dimensions) and complexity. From a structural point
of view, the multi-fractality implies that the informa-
tion graph consists of regions of short interactions (short
information transmission ranges) mixed / interspersed
with long-range interactions. Fig. 3(b) and 3(e) show
the multi-fractal spectrum for several spin chain lengths.
We observe that even though the generalized Hurst ex-
ponent for all these chain lengths exhibits a similar sig-
moidal shape, the multi-fractal spectrum display differ-
ent and asymmetric behavior. For instance, the multi-
fractal spectrum of the spin chain of length N = 102
is prolonged over higher Lipschitz-Hölder exponents and
thus stronger singularities, while the multi-fractal spec-
trum of the chain of size N = 130 is extending more to-
wards lower Lipschitz-Hölder exponents corresponding to
lower singularities in the curvature of the informational
embedding.

The existence of these singularities in the information
embedding suggests building on the multi-fractal anal-
ysis to develop a thermodynamic formalism of informa-
tion propagation through the spin networks. Of note,
this thermodynamic formalism is not aimed at quantify-
ing fluctuations over time but rather the spatially self-
similar behavior in information transfer through a spin
network. To elucidate the existence of a phase transi-
tion, we investigated the behavior of a thermodynamics
inspired specific heat derived from the estimated parti-
tion function. Figures 3(c) and 3(f) show that the spe-
cific heat exhibits a bell shape whose peak values occur
for various orders of q. In contrast, the specific heat for
spin chains of lengths N = 105, 115, 119, 129, and 149 in
Figure 5(b) display a much more complex behavior that
seems to be discontinuous in the vicinity of order q = 0.

V. MULTI-FRACTAL ANALYSIS OF RINGS

While spin chains have been most intensively studied in
recent years, other arrangements such as rings also play
an important role for quantum spintronic applications as
their translation invariance properties make them poten-
tially suitable as routers for quantum networks. Conse-
quently, it is important to study their information prop-
agation characteristics. We have estimated the ITF met-
ric for several ring sizes (i.e., from N = 50, . . . , 1000),
mapped the information propagation between all distinct
pair of nodes |i〉 and |j〉, and applied our strategy for es-
timating the partition function over the metric graph.
Fig. 5(c) and 5(e) summarize the generalized Hurst ex-
ponents as a function of the qth order moment for several
spin ring lengths. One observation we could make is that
while the generalized Hurst exponents in Fig. 5(c) are
higher and reminiscent of a persistent dynamics, the gen-
eralized Hurst exponents in Figure 5(e) are much smaller
(a third of those in Figure 5(c) and closer to 0.5) which
would indicate a tendency of an anti-persistent structure.
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This distinction is even more interesting as it appears
between spin rings of similar sizes. We have analyzed
all spin rings N = 50 to 1000 and we observed similar
patterns. Consequently, it would be important to quan-
tify the design implications and transmission properties
against realistic devices.

Another observation we could make from Fig. 5(c) and
5(e) is that most of the spin rings display a similar sig-
moidal shape observed also for some spin chains, but a
few spin rings (e.g., for N = 106 and 130) exhibit a gen-
eralized Hurst exponent that varies very little with order
q. This can also be seen from the multi-fractal spec-
trum plots in Figures 5(d) and 5(f). For spin rings of
sizes N = 106 and 130, we could conclude that are more
closer to displaying a mono-fractal behavior (due to their
lower generalized Hurst exponents and shrinking of their
multi-fractal spectrum).

Spin rings are of interest as they can act as quan-
tum routers in internet-on-a-chip architectures. Rings
can be “quenched” by applying a very strong bias (mag-
netic field) on one spin; this has the effect of favoring
transmissions symmetric relative to the bias and at the
limit of infinite bias the ring is “quenched” to a chain
with perfect information transfer fidelity between nodes
next to the quench node. Consequently, we studied the
multi-fractal characteristics of spin rings as a function of
the magnitude of applied bias. For instance, Figure 6(a)
and 6(b) summarize the generalized Hurst exponent and
the multi-fractal spectrum obtained for an information-
metric embedding of a spin ring of size N = 102 when
the bias is applied to node 100 (the magnitude of the
bias is assumed to take integer values between 0 and 10).
We observe from Figure 6(a) that with increasing bias
the generalized Hurst exponent is shifting towards higher
values. We also notice that the increase in the width of
the generalized Hurst exponent is not monotonic with
increasing bias magnitudes. This multi-fractal trend (of
higher multi-fractality for non-zero bias) is also confirmed
by the multi-fractal spectrum plot in Figure 6(b). To
further investigate this behavior, Figures 6(c) and 6(d)
summarize the generalized Hurst exponent and the multi-
fractal spectrum of the same configuration (spin ring of
size N = 102) for bias magnitudes of 0, 5, 10, 20, 50 and
100. We notice that with increasing bias magnitudes the
support of the multi-fractal spectrum shifts towards left
an anti-persistent region. To contrast these results, Fig-
ures 6(e) and 6(f) show the generalized Hurst exponent
and the multi-fractal spectrum for a spin ring of size
N = 500 and the bias is applied at node 100. We ob-
serve that while the generalized Hurst exponent is signif-
icantly wider for nonzero bias, the multi-fractal spectrum
in Figure 6(f) displays a similar tendency of shifting to-
wards left. We suspect that the multi-fractality of both
original and “quenched” spin rings is not only affected
number-theoretic properties of the ring but also by the
bias magnitudes. We plan to investigate these supposi-
tions both analytically and experimentally in the future.

VI. FROM THERMALIZATION TO
LOCALIZATION

Following the early definition of Sec. II A, thermaliza-
tion [37][38][39] in its limiting case could be interpreted
as pmax uniformly distributed for i 6= j. This implies that
the αk’s are the same across all sites; hence the spectrum
is monofractal.

Localization on the other hand in its early and extreme
definition means pmax(i, j) = δi,j . Hence d(i, j) = 0 if i =
j and d(i, j) =∞ if i 6= j. In this situation, ∀ε finite, the
ε-covering of the whole graph requires a ball around every
single site, so that nα = w(α)ε−f(α) = N . At this stage,
it is essential to recall the relationship Nε = 1, in which
case nα = w(α)ε−f(α)+1 = 1. The independence of the
latter on ε implies that f(α) = 1, that is, a flat spectrum.
We observe a flattening in the multi-fractal spectrum in
Figures 6.b, 6.d and 6.f with increasing magnitude of the
bias. However, the flattening is not complete and we
suspect that the cause of this is related to the finite size
effects of the considered rings.

To exemplify some of the “inbetween” cases, we should
imagine that the system transitions from uniformity to a
more skewed distribution measure µ. This implies that,
while initially the measure µ satisfies µ = ckε

αk = 1, it
will slightly lose mass and redistribute this mass due to
phase transition towards the tail becoming µ = ckε

αk =
εξ1 . By the same token of a phase transition, the average
number nα = w(α)ε−f(α) = 1/ε will transition to a power
law scaling of the form nα = w(α)ε−f(α) = ε−ξ2 . By cor-
roborating these two facts we obtain that f(α) = αξ2/ξ1.
The latter is a generalization of the theoretical strong
multi-fractality spectrum condition f(0 ≤ α ≤ 2) = α/2,
singled out in [36]. This heuristic derivation and re-
semblance with the multi-fractality spectrum condition
mentioned in [36] indicates that the slope and shape of
the multi-fractal spectrum for quantum spin networks de-
pends in a nontrivial way not only on the applied bias or
couplings, but also on their size and topology. We plan to
investigate these intuitions analytically and in simulation
in our future work.

Note that µ = ckε
αk = 1 means thermalization at a

low scale, while moving the mass towards the tail means
localization at a larger scale. Therefore, the preceding
is a case of phase transition to localization, concomitant
to the multi-fractal spectrum going from δ-distributed
to linear in α. To some extent, this can be visually ob-
served for ring topologies with various bias magnitudes
in Figures 6.b, 6.d and 6.f.

VII. DISCUSSION

It is our belief that the complex ITF behavior exhibited
by spin networks is a matter of their scaling properties.
By analyzing spin chains and rings up to size 1000 we
observe that they display complex mono-fractal/multi-
fractal structure depending on their symmetry. In addi-
tion, a thermodynamics inspired framework reveals that
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several such spin chains and rings exhibit some forms of
phase transition which could prove fundamental in the
design of these future devices.

The spin chain results suggest that information trans-
mission in spin networks not only exhibits complex multi-
fractal behavior but also nontrivial dependence on the
size of the network. Previous work on ITF bounds and
their attainability [15, 19] has shown that the size of the
network, N , and various number theoretic issues play a
role. Our multi-fractal analysis appears to corroborate
the observations made in prior studies and open the pos-
sibility to establish a connection between these fields. In
addition to N , it was shown in [15] that the ITF depends
on the greatest common divisor gcd(i, j), where i and j
are the input and output spins, respectively. The some-
what repetitive pattern of gcd(i, j) may be the root cause
underpinning the multi-fractality.

In a near technological future, chains will probably
have their coupling strength engineered to favor specific
transfers. It would be interesting to compare the multi-
fractal properties such as the width and shape of the gen-
eralized Hurst exponent of engineered chains with those
of a chain with uniform coupling. Figure 4 shows some
interesting trends from which we draw the following ob-
servations:

• The engineered chains have higher multi-fractality
as evidenced by the increasing width of the gener-
alized Hurst exponent.

• The spin chains exhibit a dichotomous behavior
in the sense that as a result of applying an engi-
neered strategy in some cases it makes the gener-
alized Hurst exponent shift above the original one
while in other cases it shifts below the original one.

As far as rings are concerned, for zero bias, they show
a very narrow multi-fractal spectrum, revealing that the
symmetry contributes to mono-fractality. However, rings
can be endowed with a non-trivial potential landscape
that changes the onsite potentials, corresponding to the
diagonal elements in the Hamiltonian. As the bias in-
creases we observe a higher degree of multi-fractality,
consistent with the shape of the multi-fractal spectrum
of the engineered spin chains.

The ITF developed here is an upper bound that be-
comes relevant when enough time is given for the i to j
transfer to achieve its maximum fidelity. As already em-

phasized in [15, 19], |〈j| exp(−ıHt/~)|i〉| exhibits a com-
plex, somewhat repetitive time dependence. This indi-
cates that a spatio-temporal fractal analysis is warranted,
but this is left for further research.

For both spin chains and rings, we find that the degree
of multi-fractality varies with network sizes. Engineered
spin chains display a more pronounced multi-fractal be-
havior than the original counterparts. Along the same
lines, we observe that the degree of multi-fractality for
spin rings is influenced by the considered bias magnitude.

Finally, we must recognize that there seems to be some
relationship between the many-body-localization (MBL)
[37][38][39] and the quantum phase transition we observe
in the information transfer capacity. As discussed in
[37][38][39], a quantum phase transition is observed as
one varies the disorder strength or the energy density
between the thermal phase and the MBL phase. In the
MBL, all the eigenstates do not obey the eigenstate ther-
malisation hypothesis (ETH) and the memory of local
initial conditions can survive in local observables for ar-
bitrary long times. This seems to be the case in our
analysis which encodes the interaction strength, temper-
ature, size and topology of the spin network into a infor-
mation theoretic metric (namely the information trans-
fer fidelity) and weighted graph mapping. We believe
that the mathematical formalism presented in this paper
with some significant extensions can help at overcoming
the finite-size scaling issues and elucidating the nature of
quantum phase transition, gauging the impact of control
parameters such as the interaction and disorder strength
and temperature. This multi-fractal formalism could also
suggest new avenues for studying the vicinity of the crit-
ical points.
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FIG. 1. (a) Realization of the ITF for a spin chain of size N = 105. (b) Zoom-in magnification on the ITF metric graph by a
factor of 2. (c) Zoom-in magnification on the ITF metric graph by a factor of 4. (d) Realization of the ITF for a spin chain
of size N = 150. (e) Zoom-in magnification of the ITF graph realization by a factor of 2. (f) Zoom-in magnification of the
ITF graph realization by a factor of 4.

FIG. 2. An arbitrary spin network with a set of heterogeneous coupling parameters can be represented using information-
theoretic measures as a weighted graph. Depending on the time dependent probability of transfer of excitation from spin |i〉
to |j〉 and the information theoretic measure defined on these node-to-node interactions, some nodes may reside in a smaller
geodesic island even though spatially they reside at a much larger physical distance. Relying on the information theoretic
measure, a box counting inspired strategy can help to investigate the scaling behavior of the mass exponent and derive the
multi fractal spectrum associated with node-to-node interactions in a spin network.
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FIG. 3. (a) Generalized Hurst exponent H(q) as a function of q for several spin chain lengths (i.e., N =
100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150) displaying a similar “sigmoidal” shape, but rich multi-fractal behavior.
(b) Multi-fractal spectrum f(α) as a function of the Lipschitz-Hölder mass exponent α for several spin chain lengths
(i.e., N = 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150). Although spin chains exhibit similar multi-fractal spec-
trum, they are characterized by different dominant singularities (i.e., α at which f(α) attains maximum varies across
spin chains). (c) Specific heat C(q) for several lengths (i.e., N = 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150) of
a spin chain. (d) Generalized Hurst exponent H(q) as a function of q for several spin chain lengths (i.e., N =
700, 708, 718, 726, 732, 738, 742, 750, 756, 760, 768, 772, 786, 796) displaying a similar “sigmoidal” shape, but rich multi-fractal
behavior. (e) Multi-fractal spectrum f(α) as a function of the Lipschitz-Hölder mass exponent α for several spin chain
lengths (i.e., N = 700, 708, 718, 726, 732, 738, 742, 750, 756, 760, 768, 772, 786, 796). (f) Specific heat C(q) for several lengths
(i.e., N = 700, 708, 718, 726, 732, 738, 742, 750, 756, 760, 768, 772, 786, 796) of the spin chain. Although the length of the spin
chain varies significantly, we observe similar multi-fractal patterns and curvature in the specific heat.
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FIG. 4. Comparison between original and engineered spin chains in terms of generalized Hurst exponent H(q) for various chain
lengths: a) N = 105, b) N = 505, c) N = 506, d) N = 106, e) N = 508, f) N = 700, g) N = 545, h) N = 555, and i) N = 581.
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FIG. 5. a) Generalized Hurst exponent H(q) as a function of q for spin chain lengths of N = 105, 115, 119, 129, and 149
display a highly nonlinear behavior corresponding to rich multi-fractality. b) Specific heat C(q) for spin chain lengths of N =
105, 115, 119, 129, and 149 exhibits a rich behavior that could be correlated to either a first- or a second-order (informational)
phase transition. c) Generalized Hurst exponent H(q) as a function of q for several spin ring lengths (i.e., N = 100, 108, 112, 136,
and 148) displaying a similar “sigmoidal” shape. e) The generalized Hurst exponent H(q) as a function of q for spin ring
lengths of N = 102, 126, 130, 138, and 140 display a more pronounced multi-fractal behavior than for sizes of N = 106
and 130. f) Comparison in terms of multi-fractal spectrum (shape and width) between spin ring networks of size N =
102, 106, 126, 130, 138, 140 and 150. Note that the red multifractal spectrum curve, bias = 106, passes through the point
f(2.75) = 1.4, a manifestation of the strong multifractal property f(0 ≤ α ≤ 2) = α/2 of [36].
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FIG. 6. (a) Generalized Hurst exponent (GHE) H(q) as a function of q for spin ring of length N = 102 and a bias B of
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 applied to node 100. The GHE displays a highly nonlinear behavior for non-zero bias B which
corresponds to a richer multi-fractality. (b) The multi-fractal spectrum for a ring of length N = 102 and a bias B of 0, 2, 3, 4, 6, 8
and 10. (c) The GHE H(q) as a function of q spin ring of length N = 102 and a bias B of 0, 5, 10, 20, 50, and 100. (d) The
multi-fractal spectrum for the ring of size N = 102 and a bias B of 0, 5, 10, 20, 50 and 100. Observe that for biases 50, 100, the
slope of the multifractality spectrum in roughly 1/2, in agreement with the condition f(0 ≤ α ≤ 2) = α/2 of [36]. (e) The
GHE H(q) as a function of q for a spin ring of length N = 500 and a bias B of 0, 1, 5, 10, 50, and 100. (f) The multi-fractal
spectrum for a spin ring of length N = 500 and a bias B of 0, 1, 5, 10, 50, and 100. This last case-study clearly shows sign of a
MBL transition as the bias gets close to 50 (blue curve); it is indeed noted that the blue fractal spectrum curve of bias 50, and
to a more accurate extent the yellow curve of bias 100, have their slope roughly equal to 1/2 around α = 0, in agreement with
the theoretical strong multifractality spectrum condition f(0 ≤ α ≤ 2) = α/2, singled out in [36]. Note that for biases from 0
to 10 none of that behavior is observed.


