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INVITED REVIEW

Language Mapping With Magnetoencephalography: An Update on
the Current State of Clinical Research and Practice With
Considerations for Clinical Practice Guidelines
Susan M. Bowyer,*†‡ Andrew Zillgitt,* Margaret Greenwald,†§ and Renee Lajiness-O’Neill║
*Department of Neurology, Henry Ford Health System, Detroit, Michigan, U.S.A.; †Department of Neurology, Wayne State University, Detroit, Michigan, U.S.A.;
‡Department of Physics, Oakland University, Rochester, Michigan, U.S.A.; §Department of Communication Sciences and Disorders, Wayne State University,
Detroit, Michigan, U.S.A.; and ║Department of Psychology, Eastern Michigan University, Ypsilanti, Michigan, U.S.A.

Summary: Numerous studies have shown that language
processing is not limited to a few brain areas. Visual or
auditory stimuli activate corresponding cortical areas, then
memory identifies the word or image, Wernicke’s and Broca’s
areas support the processing for either reading/listening or
speaking and many areas of the brain are recruited. Determining
how a normal person processes language helps clinicians and
scientist to understand how brain pathologies such as tumor or
stroke can affect changes in language processing. Patients with
epilepsy may develop atypical language organization. Over time,
the chronic nature of epileptic activity, or changes from a tumor
or stroke, can result in a shift of language processing area from
the left to the right hemisphere, or re-routing of language
pathways from traditional to non-traditional areas within the
dominant left hemisphere. It is important to determine where

these language areas are prior to brain surgery. MEG evoked
responses reflecting cerebral activation of receptive and
expressive language processing can be localized using several
different techniques: Single equivalent current dipole, current
distribution techniques or beamformer techniques. Over the past
20 years there have been at least 25 validated MEG studies that
indicate MEG can be used to determine the dominant hemisphere
for language processing. The use of MEG neuroimaging techniques
is needed to reliably predict altered language networks in patients
and to provide identification of language eloquent cortices for
localization and lateralization necessary for clinical care.

Key Words: Language, Wada, MEG, Brain imaging, Language
mapping, ECD.

(J Clin Neurophysiol 2020;37: 554–563)

INTRODUCTION
Magnetoencephalography (MEG) is a noninvasive clinical

and research method for recording patterns of magnetic fields
directly related to local neuronal electrical activity of the brain.1,2

The MEG imaging technique has been validated and is used to
identify compact sources of normal and abnormal brain activity.3

Safe and effective pre-surgical mapping of visual, auditory and
somatosensory functions has been accomplished using MEG.4

Functional language processing is more complex to map than the
primary senses. In the clinical environment, MEG language
mapping is used primarily for language lateralization5 rather than
more specific localization of language.6 The conundrum is that if
MEG does not correctly identify (localize) the cortical areas that
process language it would be hard to believe the MEG language
lateralization results. It is critical that the language dominant
hemisphere be determined prior to surgery in attempts to spare
language function when patients undergo interventions such as
ablation, resection or radiosurgical procedures for organic or
functional brain diseases. Understanding basic language func-
tional brain areas can help identify abnormalities in patients with
tumors, stroke and language disorders such as autism and

dyslexia. As described below, MEG techniques are replacing
the established clinical methods for lateralizing brain function
and pathology.

Magnetoencephalography imaging has been used since the
early 1990’s to investigate the latency and location of cortical
activity during language processing.4 Magnetoencephalography
imaging techniques have high spatial resolution and very high
temporal resolution. Below we describe select language pro-
cesses and the brain regions thought to support them, contribu-
tions of MEG to illuminating these relationships, comparisons of
MEG to other techniques used to image language function, and
current clinical considerations in the use of MEG.

Brain Correlates of Language Function
Ever since early brain and language models were developed

by Wernicke, Geschwind7 and others, neurologists and neuro-
psychologists have been attempting to determine how the brain
processes language and which cortical areas underlie specific
language functions. Historically, language processing areas were
determined by studying patients with lesions, tumors, or head
injuries.8,9 Often postmortem studies were conducted to deter-
mine what damage the tumors or lesions had caused that affected
speech and language processing. Major breakthroughs in the field
of language mapping came with the advent of neuroimaging
techniques such as MRI, functional magnetic resonance imaging
(fMRI), positron emission tomography (PET) and magneto-
encephalography (MEG).10 Vital regions for speech and lan-
guage processing are generally thought to include Wernicke’s
and Broca’s areas in the language dominant hemisphere.11 A
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seminal study in 1977 on 371 patients who underwent Wada and
testing for hand dominance found that of the 262 patients, without
any known clinical or radiologic evidence of an early left hemi-
sphere injury, the left hemisphere is language dominant in 96% of
right-handed individuals and 70% of left-handed individuals.12

Wernicke’s area is in the posterior part of the superior
temporal gyrus (Brodmann area [BA] 22) and is generally
thought to support comprehension of written and spoken
language (Fig. 1). Wernicke’s area is activated during receptive
language processing. BA 22 is involved in processing auditory
input and linking word pronunciations to word meaning (Fig.
1A).13,14 When written words are presented, the letter strings
are perceived in the occipital cortex prior to word recognition
and to comprehension. These neuronal pathways flow from the

occipital cortex into the angular gyrus [BA 39] then to
Wernicke’s area [BA22] (Fig. 1B). These areas are important
for comprehension but their precise roles are unclear, in part
due to differences across methodologies used.15 Comprehen-
sion tasks may involve additional areas such as the supra-
marginal gyrus [BA40].

Broca’s area is described as the motor speech center of the
brain and is located in the inferior frontal cortex, specifically the
pars triangularis [BA45] and pars opercularis [BA44] (Fig. 1).
Broca’s is activated during expressive language processing.
Wernicke’s area and Broca’s area are thought to be connected
via direct and indirect segments of the arcuate fasciculus, the
indirect portion made up of anterior and posterior segments.16

Verbal naming of heard or viewed stimuli involves Wernicke’s
area (i.e., supporting linguistic processing of the meaning of the
abstract word form) and transmission of this information to
Broca’s area to support speech production.17 Speech motor
programs are subsequently communicated to the motor cortex
and to the speech musculature.

In addition to the location of language relevant brain
regions, there is evidence of complex connections of these areas
constituting language networks. For example, the Dual Language
model18–20 describes the dorsal and ventral pathways connecting
prefrontal and temporal language-relevant regions. The dorsal
pathway connects the temporal cortex and premotor cortex
(supporting speech repetition) as well as the temporal cortex
and posterior Broca’s area (supporting complex syntactic pro-
cesses). In this model, ventral pathways are described as
connecting temporal and inferior fronto-occipital regions to
support semantic and syntactic processing (speech
comprehension).21

Patients with left lateralized stroke, tumor or epilepsy may
develop atypical language organization. Developmental language
disorders (autism22 and dyslexia23) also have atypical language
organization (Kleinhans, 2008 #866). Over time, the nature of
these impairments can result in a shift of language processing
from the left to the right hemisphere, or re-routing of language
pathways from traditional to non-traditional areas within the
dominant left hemisphere.24 Clinical features such as location of
seizure onset, age of seizure onset, and extent of interictal
epileptiform activity might contribute to the reorganization of
language.

CURRENT CLINICAL ROLE OF MEG IN
LANGUAGE MAPPING

Since language mapping is complex, the ability of MEG to
image activity with millisecond temporal resolution can provide
an inclusive overview of all aspects of language processing from
reception to expression, with millimeter spatial resolution,. The
American Clinical MEG Society outlined the best clinical
practice guidelines for imaging language processes in 2011.
These guidelines are still current and provide detailed informa-
tion on how to collect MEG activity related to language
processing. This update provides more information on specific
strengths and weakness of the different analytical techniques that
could be used to provide language results, as well as a detailed

FIG. 1. Cortical brain areas, that are active during language
processing and pathways of information flow (blue arrows),
identified in two different stimulus routes: (A) after Hearing a word
(B) after reading a word.
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list of the previous studies that validated the use of MEG to
replace the language portion of the Wada test.

Methods for data analysis differ across MEG laboratories,
but overall signal processing methods are becoming increasingly
sophisticated for enhancing signal-to-noise which improves the
specificity of source localization and therefore lateralization.
Advanced MEG data analysis techniques can be used to address
the magnetic inverse problem, as there may be several cortical
areas active simultaneously during language processing. Several
mathematical modeling approaches have been developed,
beyond the single equivalent current dipole (ECD), for MEG
mapping. These include current distribution techniques (such as
MR-FOCUSS or minimum norm estimate (MNE)) and the
beamformer (such as synthetic aperture magnetometry (SAM)).
The ability of clinical MEG Labs to use these more advanced
analysis techniques has advanced the universal use of language
mapping at most MEG centers.

UPDATE ON THE CLINICALLY PERTINENT
RESEARCH PROGRESS

LEF Latency Examples
Language-evoked magnetic fields (LEFs) appear after the

primary sensory components (early responses) and are generated
in language-related areas of the brain (late responses) regardless
of whether the modality of stimulus presentation is auditory or
visual.

In general, the LEF waveform will have several peaks (Figs. 3
and 4). The initial peaks (,150 ms) are generally associated with
basic sensory processing in the modality of stimulation (auditory
or visual). Occasionally peaks of activity may be seen between 150
and 250 ms; these are believed to be associated with feature
processing, memory and integration. If there is a peak of activity in
this latency range, it is typically localized in the basal temporal
language areas (fusiform gyri).25 Peaks of activity between 250
and 750 ms, or later, evoked by language stimulation are
associated with higher-order cognitive processing, and contain
several peaks of activity arising from multiple language areas such
as supramarginal gyrus, angular gyrus, inferior frontal gyri.6

Language-evoked magnetic field studies of receptive language
(comprehension) localize sources to the posterior aspects of the
superior and middle temporal lobe (including Wernicke’s area)
and the temporoparietal junction whereas LEF studies of

expressive language (speech production) localize activity in
frontal (including Broca’s area) and basal temporal areas. Such
responses are enhanced when attention to the task is dis-
played.26 The latency and location of the peak activity should
be included in the clinical MEG report, including the primary
response followed by peaks observed in Wernicke’s area and
then in Broca’s area, followed by the laterality index (LI).

Laterality Index
A laterality index is calculated based on summing the

number of valid dipole fits or by summing current in each
hemisphere depending on the source estimation method used.
Here LI is defined by 100 · (R 2 L)/(R 1 L) where L and R are
the number of accepted dipoles fit in the left and right
hemispheres, respectively. Laterality index values from 2100
to 220 indicate strong left hemisphere language dominance.
Laterality index values from 219 to 119 indicate bilateral
language activation. Laterality index values from 120 to 1100
indicate right hemisphere language dominance. Laterality index
for the patient in Fig. 2 is 1100, indicating Right hemisphere
language processing during the latency 150 to 300 ms. A similar
LI can be calculated for current density by summing the current
flowing in each hemisphere (Fig. 5) and inserting these values in
the LI above.5 Laterality index for the Control subject in Fig. 3 is
250, indicating Left hemisphere language processing during the
latency 150 to 300 ms. Laterality index for the Control subject in
Fig. 4 is 223, indicating Left hemisphere language processing
during the latency 300 to 500 ms.

Clinical reports should include the LI when calculated along
with a clear statement of which hemisphere is language dominant
(left dominant, right dominant, bilateral or inconclusive) and
what the value represents (dipoles or current density techniques).
Alternative analyses including beamforming strategies and
multiple dipole strategies may also be viable.

Analytical Methods
The equivalent current dipole is a mathematical model that

has been widely used with MEG to determine the location of
compact magnetic fields measured at the scalp surface during
language processing.27,28 An example of typical single ECD
results are shown in Fig. 2 during a visual object naming task.
The single ECD technique poorly localizes cortical language
processing areas because numerous cortical areas are simulta-
neously active and the single ECD technique can only detect one

FIG. 2. MEG ECD source localization of
the right hemispheric homologue of
Wernicke’s activation during visual object
naming in a patient with epilepsy in the
left temporal lobe. Dipoles are
constrained to the right temporal region,
indicating right language hemispheric
dominance for this patient. LI ¼ R 2
L/R 1 L ¼ 8–0/8 ¼ 1 · 100 ¼ 1100,
Right dominant for the time interval 150
to 300 ms. NOTE the single ECD

technique may not correctly localize, but it can still be used for lateralization.
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location at any given time point. This one location may be just
the center of mass of all the cortical activity at each instant in
time during language processing. This technique has been used
more to lateralize language by calculating the LI.

Lee25 investigated test-retest and inter-rater reliability for
MEG/ECD localization of language and found their MEG brain
mapping protocols to be adequate for receptive language
localization in epilepsy surgery candidates. Simos et al27 used
MEG to localize cortical areas associated with language
comprehension. Using their single ECD technique, they found
activity in the left temporo-parietal cortex. Recognizing the
limitations of the ECD technique, they concluded that the
dipolar MEG patterns which were imaged may have represented
the summation of multiple and spatially distinct sources. Thus,
while their MEG/ECD imaging results may be useful, they
should be viewed with caution. Kamada et al29 demonstrated
that MEG/ECD alone was not sufficient to accurately locate
expressive and receptive language, but when combined with
fMRI they obtained high reliability for localizing these
language areas as there are overlapping areas to provide
confirmation.

Current density distribution techniques30 are another approach
for addressing the inverse problem and for revealing a more complex

map of cortical activity than can be revealed using the single ECD
model. Current density imaging techniques are able to accommodate
all variations of brain activity including those that characterize
cortical language processing.5,6,31,32 One drawback is some current
density imaging techniques have poor resolution of compact source
structures.33 As a result, weighted minimum norm techniques have
been developed that enforce focal imaging constraints by statistical
control of source amplitudes and allow integration of prior
knowledge of source activity. MR-FOCUSS34 minimizes sensitivity
to noise and controls the focal imaging by incorporating a multi-
resolution cortical model designed to generate a solution with
a specific statistical distribution of cortical source amplitudes. This
allows the norm of the solution to be adjusted to suit the imaging
task. Examples of this current distribution technique for language
mapping are shown in Figs. 3 and 4.

A different approach to language mapping is beamforming.
Beamformer techniques35 are spatiotemporal covariance-based
techniques for estimating compact source activity. For each
location of a brain model grid, a filter is applied to the MEG data,
scanning for dipoles in the brain.30,35–38 A beamformer performs
spatial filtering on data from a sensor array to discriminate
between signals arriving from a location of interest and those
originating elsewhere.33 Beamformer imaging techniques do not

FIG. 3. A, MEG current distribution source localization of
Wernicke’s area. Red is most intense area of activation. Scale is in
nano Amp meters. B, The butterfly plot of the evoked wave form
shows the peaks of activity within the latency window for Wernicke
activity. Peak latency is at 235 ms after onset of visual word. C, In
this control subject Wernicke’s area is lateralized to the Left angular
and supramarginal gyri with a LI of 250 for the latency window
150–300 ms. MEG, magnetoencephalography; LI, laterality index.

FIG. 4. A, MEG current distribution source localization of Broca’s
area. Red is most intense area of activation. Scale is in nano Amp
meters. B, The butterfly plot of the evoked wave form shows the
peaks of activity within the latency window for Broca activity. Peak
latency is at 405 ms after onset of visual word. C, In this control
subject Broca’s area is lateralized to the Left inferior frontal gyrus
with a LI ofd23 for the latency window 300 to 500 ms. MEG,
magnetoencephalography; LI, laterality index.
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require an estimate of the number of sources and, compared to
multiple dipole techniques, provide superior source localization
when the data contain significant noise.38

These varied approaches to analyzing MEG data should
be considered when performing language mapping. The
current density techniques as well as beamforming both reveal
a more complex map of cortical activity than can be acquired
using the ECD model alone. The most commonly employed
methods are based on dipoles and minimum norm estimates5,27,39–42.
The studies most often cited are those performed by Papanicolaou
and colleagues for which they calculated a LI by counting the
number of ECD fits for language localizations in each hemi-
sphere.27,39–41,43,44 See Table 1 for a list of pros and cons for each
technique.

Validation of MEG by Wada
Magnetoencephalography is noninvasive and thus provides

an advantage over the invasive intracarotid amobarbital pro-
cedure for language lateralization. The intracarotid amobarbital
procedure, also known as the Wada test after its inventor, Juhn
Wada,45 is a gold standard of epilepsy surgery evaluations
because it can provide lateralizing information about language
and memory.46 Wada uses an anesthetic (sodium amobarbital,
methohexital, pentobarbital, propofol and etomidate)47 injected
into the internal carotid artery using a catheter via the femoral
artery. Its flow through the brain includes the hippocampal
structure, which is normally involved in memory function.
During the injection, the patient holds up both arms and counts
aloud; when one arm drops, the contralateral hemisphere has
been anesthetized. The language portion of this test determines in
which hemisphere motor speech is located, by noting if speech is
arrested during the injection. The Wada is conducted prior to
implantation of intracranial electrodes. One drawback for using
the results from the Wada to determine the language dominant
hemisphere is that in some individuals Broca’s area activity is in
the left hemisphere, but Wernicke’s area activity is in the right
hemisphere. This type of language displacement is often seen in
patients with left temporal lobe epilepsy.24

Because of the very brief interval of hemispheric anesthesia
during the Wada test, a variety of noninvasive methods have been
advocated as potential replacements. The two most often cited are
fMRI48 and MEG.44 However, while both are very good clinical
tests for language, neither has been found to be a valid replacement
for the memory portion of the Wada test. Working memory or
short-term memory can be tested to determine the dominant
hemisphere, but it is much more difficult to identify the dominant
hemisphere for long-term memory (i.e., life-time memory).

Many studies have been performed that validate the MEG
technique by comparing its localization of language specific
cortex to electrical stimulation mapping with invasive intracra-
nial mapping of language.49 Several MEG studies have success-
fully investigated the laterality of the language dominant
hemisphere (Table 2) and found very high correlations with the
Wada test. Breier et al.39 found MEG ECD language laterality
correlated well (87%) with Wada results in 19 children. Maestu
et al. studied the same MEG ECD technique (magnetic source
imaging) to validate MEG language paradigms in Spanish

TABLE 1. MEG Source Analysis Strengthens and Weaknesses

Analytical Technique Pros Cons

Single ECD Easy to use Only one location in the entire brain can be mapped
at each millisecond in time.

Current distribution (MR-FOCUSS, MNE) Multiple brain locations can be mapped at each
millisecond in time.

More difficult to perform the analysis.

Poor resolution of compact source.
Beamforming (SAM, vector) Work well in MEG labs that have large magnetic

disturbances in the environment (i.e., Trains).
More difficult to perform the analysis.

Correlated sources in the brain may cancel each
other out.

ECD, equivalent current dipole.

FIG. 5. Laterality graph indicating the sum of the current density
in the brain at each time point. The lower half is when average
activity is higher in the left hemisphere than the right. When
activity is in the top half of the graph the activity is more in the
right hemisphere than the left. The overall index can be calculated
over the time interval 0.15 to 0.8 seconds. Laterality for this subject
was 211, indicating more left dominant language processing.
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speaking patients and also found w87% correlated with Wada
testing.50 Kober et al.42 used the current source strength in each
hemisphere to determine the dominant hemisphere, which was
found to be left dominant in all 15 of their right-handed normal
subjects. Bowyer and colleagues5 studied the results of Wada
testing and MEG current distribution lateralization indices, and
found MEG correlated highly (89%) with Wada results of
language dominance (Fig. 5). Findley and colleagues used the
SAM beamforming technique and found 93% match between
language laterality and Wada.51 Dynamic statistical parametric
mapping has been used by McDonald and colleagues, who found
100% match for later latencies that correlated with Broca’s
activation.52 Tanaka et al.53 also used dynamic statistical para-
metric mapping and found a 91.4% match rate between MEG
language laterality and Wada.

At present, some factors may require the use of both MEG
and electrocorticography (ECoG) testing to study brain-language
correlates, such as differences in brain reorganization across
patients with brain disorders, differences in paradigms (activation
in MEG and fMRI vs. disruption during ECoG), and the effects

of noise. However, the results of the currently available studies
are often interpreted as indicating that MEG is a valid method for
determining the language dominant hemisphere; laterality of the
language areas, as measured by MEG, has been found to
correlate between 80% to 95% with results from the Wada
procedure and intracranial recordings. From this view, the results
from these studies illustrate that MEG LEF studies are able to
replace the language portion of the invasive Wada procedure.

Comparisons of MEG With EEG, fMRI and PET for
Language Mapping

Magnetoencephalography also has been compared to other
techniques for imaging brain-language relationships, including
EEG, structural MRI, PET, and functional MRI. The temporal
resolution of EEG recordings is equal to that of MEG; however,
complex realistic models of volume currents and boundary
potentials must be calculated in order to obtain accurate
mathematical models for EEG source localization imaging.54

On the other hand, with MEG imaging, good mathematical

TABLE 2. MEG Studies That Were Validated by WADA or IAP

Group
Sample
Size Method

Task/Stimuli
Expressive/Receptive Visual/Auditory

Validated Wada or
Intracarotid

Amobarbital Procedure

Papanicolaou 1999 12 MSI Word identification Auditory (3) 100%
Visual (9)

Breier 2000 26 MSI Words/reception Visual and auditory 92%
Breier 2001 19 MSI Words/reception Visual and auditory 87%
Szymanski 2001 15 MSI Vowels/reception Auditory 71%
Maestu 2002 8 MSI Words/reception Auditory 87.5%
Papanicolaou 2004 100 MSI Words/reception Auditory 87%
Hirata 2004 20 SAM Words (silent reading) Visual 95%
Bowyer 2005 27 MR-FOCUSS Words Visual 63% frontal later latencies

Receptive and expressive 56% temporal early latencies
Bowyer 2005 27 MR-FOCUSS Picture naming Visual 96% frontal later latencies

Receptive and expressive 48% temporal early latencies
Pataraia 2005 12 MSI Words (listening) Auditory 92%
Merrifield 2007 12 MSI Words/reception Auditory 75%

Memory recall
Kamada 2007 117 MSI combined with

FMRI
Words (read) Visual 100%

99 MEG MSI 82.4%
Kamada 2007 22 MSI Word reading Visual 100%
Kim Chung 2008 17 MNE/spatial filter Words/reception Auditory 94% frontal later latencies

71% temporal early latencies
McDonald 2009 8 Dynamic statistical

parametric mapping
Words/reception Visual 100% frontal later latencies

75% temporal early latencies
Doss 2009 35 MSI Word recognition

receptive
Auditory 86%

Hirata 2010 60 SAM Words (silent reading Visual 85%
Ota 2011 28 MSI Word reception (read) Visual 85.7%
Findlay 2012 14 SAM– beamforming Verb generation overt Auditory 93%

Receptive and expressive
Tanaka 2013 35 Dynamic statistical

parametric mapping
Word decide if abstract or
concrete (semantic task)

Visual 91.4%

fMRI, functional magnetic resonance imaging.
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model accuracy can often be achieved using calculations based
on a spherical volume conductor that has been matched to the
local skull curvature.55 MEG mathematical model calculations
are less sensitive to pathology or anatomical defects that alter
tissue conductivity.56 These aspects of MEG indicate the
superiority of MEG localization, with errors less than 5 mm
compared to w20 mm in EEG. The signal to noise ratio of MEG
for mostly neocortical areas is also better than that of EEG57 such
that EEG would need a higher number of trials to obtain the same
signal.

Conventional structural MRI provides an image of the
anatomical structure or morphology of the sulci and gyri of
the cerebral convexity.58 Although MRI cannot provide any
functional information, tumors and lesions can be clearly
visualized. In 1988, PET was used for initial investigations of
the cortical areas involved in language processing of a single
word.59 Since radiation dosage limits the number of times
a task can be administered, repetition of the task with the
patient was not possible. Two noninvasive imaging techni-
ques, fMRI60 and MEG,61 were since developed. Functional
magnetic resonance imaging identifies local changes in the
blood oxygen level dependent MRI signal (BOLD response)
associated with changes in neuronal metabolic activity.62,63

Thus, fMRI provides neurosurgeons with functional maps of
cortical regions of interest. The actual mechanism by which
the BOLD response varies with neuronal activity is not well
understood. Anomalous blood vessel development (e.g., deep
venous anomaly, arteriovenous malformations, tumor angio-
genesis) tends to distort fMRI features and may create false
impressions of cerebrocortical excitability. MEG, on the other
hand, records the pattern of magnetic fields directly related to
local neuronal electric activity. As noted above, MEG
imaging techniques have high spatial resolution and very
high temporal resolution. In a review of published fMRI,
MEG (using ECD), and PET language mapping studies, MEG
was found to be superior to the other two techniques.64 This

review study found that though PET had good concordance
for language mapping it has poor temporal resolution and is
highly invasive.64 fMRI was found to be generally quite
favorable for language mapping but significant variability
was found across studies with respect to methodology,
preventing assessment of the reliability.64 The authors found
MEG had strong reliability and validity for language
mapping.64

RAMIFICATIONS AND RECOMMENDATIONS FOR
CLINICAL PRACTICE

The following are the best practices for obtaining reliable
language mapping results. Magnetoencephalography language
paradigms should be ordered when the removal of temporal
cortices in the language dominant hemisphere is being consid-
ered. In patients with epilepsy, tumors and lesions, the language
processing pathways may have been modified based on the
extent of their disease. Language mapping should be ordered if
language difficulties are noted during seizure activity or if the
epilepsy involves the left temporal cortex. To help determine
when MEG language mapping is appropriate to order we have
included a decision tree in Fig. 6.

Language Tasks and Stimuli
A variety of language tests have been used to localize or

lateralize language function with MEG. Verb generation and
object naming evoke cortical activation sufficiently robust to
allow neuroimaging techniques such as fMRI, PET, and MEG to
detect and localize where the brain responses are occurring.65 In
the verb generation task, the patient is presented with a noun
(either in picture or auditory form) and is asked to think of a verb
that goes with the noun (e.g., Ball: KICK). In the object naming
task, the patient is presented with a picture of an object and is
asked to think of its name. Intracranial mapping of these two

FIG. 6. Graph of a MEG based algorithm for
presurgical lateralization of language function.
Reprinted with permission from Elsevier Book: Winn,
Chapter:66, Page:11. CSM, cortical stimulation
mapping; fMRI, functional MRI; IAP, intracarotid
amobarbital procedure; ICM, intracranial monitoring;
MEG, magnetoencephalography; NTP,
neuropsychological testing.
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language tasks detects cortical areas of activation comparable to
those from neuroimaging techniques.66 Thus, the established
paradigms for intracranial language mapping across many
hospitals in the USA are verb generation and object naming.66

Differences in specific types of stimuli or in language task
instructions affect the patterns of brain activation during
language processing.67 Also of note is the overlapping of
receptive and expressive language activation patterns. Primary
activation caused by auditory or visual stimulation is followed by
activation of receptive language areas (including Wernicke’s
area). To activate expressive language processing and Broca’s
area supporting motor speech, patients should be instructed in an
expressive task to covertly name objects or silently generate
verbs. Examples of auditory stimuli can be found in Papanico-
laou et al.,43 while examples of the visual picture and word
stimuli can be found in Bowyer et al.6.

The Ideal Patient
For the most robust evoked brain activity, the patient needs

to be in a state of wakefulness. This is critical for collecting data
with a good signal-to-noise ratio. The occipital alpha rhythm in
spontaneous ongoing MEG recordings can be used to monitor
wakefulness during the study. The use of behavioral target
stimuli interspersed in the task stimuli (e.g., “push a button when
you see a solid circle or hear a tone”) can be used to determine if
the patient is awake and participating in the task. The technol-
ogist running the study can watch the behavioral response
channel to determine if the patient pushes the button. Data
segments associated with target stimuli and lateralized motor
responses should not be averaged in the final MEG evoked
responses.

Integrity of the Data
It is important to evaluate the integrity of basic auditory/

visual responses at w100 ms. Early evoked fields can be used
for quality control (latency, topography). For example, if
stimuli are presented acoustically, the auditory N100m re-
sponses should be symmetrical in topography, peaking around
100 ms and identified within the auditory cortex (superior
temporal gyri). If visual stimuli are used, the peak N100m
response should be easily identified in the occipital cortex.
Epilepsy, tumors and other lesions can compromise laterali-
zation of basic sensory (auditory/visual) processing if located
in primary or secondary sensory (auditory/visual) areas. If core
sensory processing (auditory/visual) is compromised, caution
is needed in the interpretation of the long latency activity and
may lead to inconclusive results.

Processing and Reporting MEG Language Mapping
The ACMEG CPG #2 provides all the necessary informa-

tion for MEG data collection. Magnetoencephalography LEFs for
lateralizing language has been shown to work extremely well
using any of the described MEG imaging analysis techniques. As
described above analysis techniques beyond the single ECD can
be used to provide better language localizations.

The report of language localization and lateralization
should include the stimuli used and the type of data analysis

employed. Plotting of results should be on a spatially aligned
individual patient MRI. Such plots may give the impression to
neurosurgeons that areas without plotted activity are safe to
resect. This type of error (false negative) cannot be excluded
systematically, so qualifying statements may be appropriate.

CONCLUSIONS
In the clinical environment, MEG language mapping is used

primarily for language lateralization5 prior to a surgical resec-
tion. Validation of MEG for reliably detecting the dominant
hemisphere of language processing in patients has occurred in
over 25 studies with an average 85% concordance with Wada
results (See table listing each validated MEG study). The
laterality is based on the accurate localization of Broca’s area
and Wernicke’s area activated during language processing. There
are several tasks such as verb generation, picture naming, and
auditory word presentation that have been used with success.
These tasks can be expressive (where Broca’s area is strongly
activated) or receptive (where Wernicke’s area is strongly
activated). The Wada test mainly identifies the hemisphere in
which motor speech is located. Magnetoencephalography studies
that use expressive speech paradigms tend to match very well
with Wada results. Since epilepsy may disrupt language net-
works involving only Wernicke’s area or only Broca’s area, it is
wise to map both expressive and receptive language processing.

Understanding basic language functional brain areas can
help identify abnormalities in patients with language disorders
such as autism and dyslexia. In the future, identifying the dorsal
and ventral21 pathways that constitute the Language networks
will provide insights into the underlying mechanisms of these
disorders. The American Clinical MEG Society guidelines of
2011 provide the foundation for the best practice for imaging
language processes.4 This current review has provided pros and
cons for the more complex analysis methods that can be used for
language mapping. MEG has been shown to have strong
reliability and validity for language mapping. The use of MEG
neuroimaging can be used to detect altered language networks in
patients and to provide identification of language eloquent
cortices necessary for clinical care.
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