124 research outputs found

    Substance P induces TNF-α and IL-6 production through NFÎșB in peritoneal mast cells

    Get PDF
    AbstractThe neuropeptide Substance P (SP) is an important mediator of neuroimmunomodulatory activity. The aim of this study is to elucidate the mechanism used by SP to promote increased production of pro-inflammatory cytokines in fresh isolated rat peritoneal mast cells (rPMC). We have demonstrated that SP induces production of interleukin-6 (IL-6) in rPMC through the PI-3K, p42/44 and p38 MAP kinase pathways. SP-stimulated rPMC also exhibited an enhanced nuclear translocation of the nuclear factor Îș B (NFÎșB). The tumour necrosis factor-α (TNF-α) and IL-6 production was completely inhibited by using (E)-4-hydroxynonenal (HNE) as an inhibitor of IÎșB-α and -ÎČ phosphorylation. Further, TNF-α and IL-6 expression was significantly inhibited by the oligonucleotides (ODNs) containing the NFÎșB element (NFÎșB decoy ODNs) but not by the scrambled control ODNs. These findings indicate that the NFÎșB pathway is involved in the transcriptional regulation of the TNF-α and IL-6 overexpression in primary SP-stimulated mast cells

    When You Said \u27Good-Bye\u27

    Get PDF
    Photograph of Jan Garber; Illustration of man in tux and woman in dress embracinghttps://scholarsjunction.msstate.edu/cht-sheet-music/11130/thumbnail.jp

    Oestradiol enhances in vitro the histamine release induced by embryonic histamine-releasing factor (EHRF) from uterine mast cells

    Get PDF
    The relationship between maternal hormones and factors secreted by the implanting embryo is still controversial. We have analysed the in-vitro effect of oestradiol and human embryo-derived histamine-releasing factor (EHRF) on histamine release from rat uterine mast cells. Rat uterine mast cells which were preincubated with oestradiol and then challenged with human EHRF gave histamine release values two- to threefold higher than those without preincubation. The enhancement observed was time- and temperature-dependent. A similar enhancement was obtained with human sensitized basophils but not with rat peritoneal mast cells. Oestradiol, used as a direct challenge, did not induce any histamine release from either rat uterine or peritoneal mast cells, or from human sensitized basophils. Oestradiol preincubation also enhanced the histamine release induced by anti-IgE but did not enhance the histamine release induced by substance P or compound 48/80, two secretagogues that are not mediated by IgE. Moreover, uterine fragments derived from rats at various oestrus phases, with different amounts of endogenous oestrogen, were challenged in vitro with EHRF. The release of histamine by mast cells was higher at the proestrus and preimplantation phases than at dioestrus. All these findings suggest that the interaction of oestradiol with rat uterine mast cells was capable of enhancing in vitro the histamine releasing effect of EHR

    Targeted therapy for hepatocellular carcinoma: novel agents on the horizon

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies

    Novel Combination of Sorafenib and Celecoxib Provides Synergistic Anti-Proliferative and Pro-Apoptotic Effects in Human Liver Cancer Cells

    Get PDF
    Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex¼) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies

    Brucella and Osteoarticular Cell Activation: Partners in Crime

    Get PDF
    Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the interaction between B. abortus and immune and osteoarticular cells may play an important role in producing damage in joint and bone.Fil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Arriola Benitez, Paula Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Delpino, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentin

    To manage a complex dependency: The experience of caregiving after a fall

    Get PDF
    Aim: To understand the experience of family members of an older relative who has had a fall which required medical attention. Background: There is abundant bibliography in caregiving, but little is known about the problems faced by caregivers and how family members cope when their older relative has a fall. Design: Qualitative study that used a symbolic interactionism perspective. Methods: Twenty‐two people with older relatives, who had had a fall and contacted health services in Spain, participated in the study. Data were obtained via written accounts, focus groups, and semi‐structured interviews between February 2014 ‐ December 2015. Analysis was guided by grounded theory procedures. Results: With the fall, dependency becomes a complex issue for the family. To manage a complex dependency is the core issue that emerges from the data analysis. It depicts family efforts to assist their relative in gaining autonomy after a fall, in the best conditions they can provide. They do this with little guidance and support from healthcare professionals. Conclusions: Guides and protocols for the care of a fragile older person, particularly after a fall, should not only include care but also support to caregivers. Health professionals and especially nurses need to be aware and respond to the family caregivers needs after a fall. To the fall prevention initiatives already in place, it must be added that those who support family members to cope with the care of an older person who has had a fall.Authors receive funds to conduct this research from the Nursing Scientific Association of Spain (SCELE), Charo Palencia Grant

    Toxic mineral elements in Mytilus galloprovincialis from Sicilian coasts (Southern Italy)

    Get PDF
    We assessed the relationship between V, Cr, Mn, Hg, As, Cd, Sn, Sb and Pb concentrations in Mytilus galloprovincialis samples from the coasts of Sicily and the expression of metallothioneins. Toxic mineral elements assessment was carried out by A.A. Spectrometry and ICP-MS. The metallothioneins expression was performed by q-PCR method. Low metals' levels were found in the mussel samples examined, in comparison with what was reported in literature. The highest mean values of toxic mineral elements were found in Gela (Cr 0.178 ± 0.03 mg/Kg, Mn 4.325 ± 0.012 mg/Kg, As 3.706 ± 0.009 mg/Kg, Sn 0.148 ± 0.014 mg/Kg, Sb 0.009 ± 0.004 mg/Kg e Pb 0.364 ± 0.01 mg/Kg). Significant levels of Hg were found in samples from Catania (0.014 ± 0.005 mg/Kg). Only vanadium and lead concentrations showed significant differences between sampling areas (p < 0.05). Molecular analysis verified a basal expression of Mt1 and the absence of over-expression of Mt2, confirming the low mineral's concentrations found in the samples examined

    Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodelling in healthy and cancer-bearing mice

    Get PDF
    Background Cancer-associated bone disease is a serious complication in bone sarcomas and metastatic carcinomas of breast and prostate origin. Monoacylglycerol lipase (MAGL) is an enzyme of the endocannabinoid system, and is responsible for the degradation of the most abundant endocannabinoid in bone, 2-arachidonoyl glycerol (2AG). Methods The effects of the verified MAGL inhibitor on bone remodelling were assessed in healthy mice and in mouse models of bone disease caused by prostate and breast cancers and osteosarcoma. Findings JZL184 reduced osteolytic bone metastasis in mouse models of breast and prostate cancers, and inhibited skeletal tumour growth, metastasis and the formation of ectopic bone in models of osteosarcoma. Additionally, JZL184 suppressed cachexia and prolonged survival in mice injected with metastatic osteosarcoma and osteotropic cancer cells. Functional and histological analysis revealed that the osteoprotective action of JZL184 in cancer models is predominately due to inhibition of tumour growth and metastasis. In the absence of cancer, however, exposure to JZL184 exerts a paradoxical reduction of bone volume via an effect that is mediated by both Cnr1 and Cnr2 cannabinoid receptors. Interpretation MAGL inhibitors such as JZL184, or its novel analogues, may be of value in the treatment of bone disease caused by primary bone cancer and bone metastasis, however, activation of the skeletal endocannabinoid system may limit their usefulness as osteoprotective agents
    • 

    corecore