34 research outputs found

    Closed-loop control of product properties in metal forming

    Get PDF
    Metal forming processes operate in conditions of uncertainty due to parameter variation and imperfect understanding. This uncertainty leads to a degradation of product properties from customer specifications, which can be reduced by the use of closed-loop control. A framework of analysis is presented for understanding closed-loop control in metal forming, allowing an assessment of current and future developments in actuators, sensors and models. This leads to a survey of current and emerging applications across a broad spectrum of metal forming processes, and a discussion of likely developments.Engineering and Physical Sciences Research Council (Grant ID: EP/K018108/1)This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.cirp.2016.06.00

    Manufacturing dish shaped rings on radial-axial ring rolling mills

    No full text
    Ring rolling is an established method to produce seamless rings of different cross-sectional geometries. For dish shaped rings, there are applications in different areas such as offshore, aeronautics or the energy sector. At the moment, dish shaped rings are produced by machining of rings with rectangular shaped cross section, by (open die) hollow forging on a conical mandrel or by using shaped ring rolling tools. These ways of manufacturing have the disadvantage of high material waste, additional costs for special tools, long process time and limited or inflexible geometries. Therefore, the manufacturing of dish shaped rings on conventional radial-axial ring rolling mills would expand the range of products for ring producers. The aim of this study is to investigate the feasibility of an alternative to the current manufacturing processes, without requiring additional tooling and material costs. Therefore, the intended formation of dish shaped rings-previously regarded as a form error-is investigated. Based on an analysis of geometrical requirements and metal flow mechanisms, a rolling strategy is presented, causing dishing and ring climbing by a large height reduction of the ring. Using this rolling strategy dish shaped rings with dishing angles up to 18° were achieved. In addition to the experiments finite element method (FEM)-simulations of the process have been successfully conducted, in order to analyze the local strain evolution. However, when the contact between ring and main roll is lost in the process the ring starts to oscillate around the mandrel and neither dishing nor ring climbing is observed. © 2013 German Academic Society for Production Engineering (WGP)

    Numerical simulations supporting the process design of ring rolling processes

    No full text
    In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC

    3D-FE simulation of ring rolling with integrated closed-loop tool motion control

    No full text

    Flexible axial profile ring rolling

    No full text
    corecore