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1. Motivation

The technology of metal forming has evolved over 7000 years,
from the earliest ornaments and tools, through the mediaeval
blacksmith and armourer, to today’s rapid mass production in
rolling mills and presses. This development, supported by parallel
developments in the science of plasticity [133] and the under-
standing and prediction of product properties [177], has led to
extraordinary world-wide benefit. The global industrial system
currently produces 200 kg of steel [39] and 7 kg of aluminium [38]
per person per year and transforms them into buildings, vehicles,
equipment and final goods [5] of universal familiarity at
unprecedentedly low cost.

Unlike ceramic or composite materials, the properties of metal
components are a consequence both of their composition and of
the history of thermo-mechanical processing that was used to
convert the as-cast material into a final form. The properties of
interest include both the overall geometry of the component,
mechanical properties such as strength and ductility, surface
properties such as roughness and micro-structural properties such
as texture which influences almost all mechanical properties.

aim at increasingly refined product states, for example wit
distribution of strength and ductility through components suc
the B-pillar in cars, to optimise their performance in service an
a crash. Increasing the speed of production of these tig
specified components depends primarily on the elimination
variability through ever more precise control of material com
sition, temperature history and geometry. Decades of effort h
improved tolerances in metal forming so they are now m
sensitive to smaller uncertainties which are beyond the reac
even the most advanced production systems. These incl
uncertainties related to the as-cast microstructure, con
surfaces, post-processing and process interruptions.

When metal is cast and first solidifies, even though
composition is tightly controlled, the pattern of nucleation 

defines the grain structure of the solid cannot be controlled. 

distribution of grain sizes and their composition, phases 

orientation are therefore subject to stochastic variation
illustrated in Fig. 1. This variability creates an uncertainty ab
the outcome of downstream processing and hence properties

The geometric precision, surface quality and microstructure
product in metal forming depends on the tools, the ela
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Metal forming processes operate in conditions of uncertainty due to parameter variation and imper

understanding. This uncertainty leads to a degradation of product properties from custo

specifications, which can be reduced by the use of closed-loop control. A framework of analys

presented for understanding closed-loop control in metal forming, allowing an assessment of current

future developments in actuators, sensors and models. This leads to a survey of current and emer

applications across a broad spectrum of metal forming processes, and a discussion of likely developme
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deflection of the equipment and the heat transfer between t
and workpiece. In turn, these interactions depend on lubricat
surface oxidation, and tool wear. However, these mechanisms v
across the contact surface and throughout processing. For exam
Fig. 2 shows how the coefficient of friction between tool 

workpiece varies even under the highly controlled conditions 
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n many metal forming operations, the product properties
inue to evolve after the main action of processing is complete,
xample due to post-process cooling, and these post-processes

 a high-degree of uncertainty. Fig. 3 illustrates the variability
ringback of samples of the same material.
nanticipated interruptions to processing may change process
itions away from their expected state, particularly for
esses that operate above ambient temperature. For example
incoming material to a hot rolling mill will cool more than
cted if there is a delay between its release from the pre-heat
ace and mill entry and equally the ‘thermal crown’ of the work

 (their thermal expansion) will evolve between strips. This
rtainty is particularly acute when equipment operation is re-

ted after an idle period, or during switchover between different
ucts.

These examples of uncertainty in metal forming can usefully be
separated into two categories in anticipation of the exploration of
closed-loop control in this paper:

� Model errors include all uncertainties related to use of a process
model. For example, a model used to predict roll force and torque
in strip rolling might fail to predict the values accurately due to
the use of inaccurate material models, or failure to characterise
friction variations such as those shown in Fig. 2.
� Disturbances include all uncertainties beyond what should have

been predicted by the process model. For example, a process
model in rolling that assumed the incoming material would be of
constant thickness and at ambient temperature would be
disturbed – its output would be inaccurate – if the incoming
material in fact had thickness variations and was at a raised
temperature. Similarly, vibration of the equipment might change
the outcome of processing.

Within the community of metal forming researchers, these two
forms of uncertainty look rather similar: disturbances would
become model errors if the scope of the model were expanded to
cover the disturbing phenomenon. However, from within the
community of control engineers, the two forms of uncertainty are
quite different – because one (the model error) is affected by the
control signals applied to the process, while the other (the
disturbances) is not.

Fig. 4 presents a schematic illustration of metal forming
processes which shows the relationship between the physical
process and any model used to describe it. The figure demonstrates
the challenge of achieving product quality in the face of the two
forms of uncertainty. The process is operated according to a
schedule of planned actuator inputs, u. Any errors in the model, D,
will influence the schedule and degrade the product state,
z. However, even were the process model perfect, un-modelled
disturbances, d, will also drive the state away from its reference
target.

Uncertainties in metal forming downgrade product quality
which must be compensated by additional downstream
manufacturing, increasing cost and reducing productivity. This
is particularly important in small batch runs, which are subject to
the highest uncertainties, but where the cost of compensating for
uncertainties cannot be shared over a long production run.
Furthermore, as the science of product property prediction
improves and while the range of actuation and sensing that can
be applied in metal forming increases, there is a growing
opportunity to add more value through metal forming, to tailor
product properties more precisely [177]. As well as component
geometry, metal forming processes in future can aim to deliver
other specified product properties.

Today’s metal forming processes operate at levels of product
quality and overall productivity beyond any possible imagining of
the mediaeval blacksmith. However, the blacksmith could
compensate for uncertainties and still produce a product of the
required quality. This opportunity, which is only available to a very
limited extent in today’s mass production equipment, provides a
further motivation for this paper: given emerging insights into
product properties [177] and 20 years of innovation to increase
process flexibility [6,65,88], could metal forming processes of the
future be designed to compensate for a wide range of uncertainties

. Uncertainties related to the material: grain size distributions in cast steel.

 [153], p120.

. Variation of friction coefficient with temperature and speed during a strip

ing test [183].
. Variation in springback during the air bending of sheets of the high-strength

 Docol100DP to different bend angles [49].
and still achieve today’s excellent productivity? Specifically, is it
possible to add feedback to the schematic diagram of Fig. 4 that
allows compensation for the unavoidable uncertainties that arise
in metal forming operations?

The topic of closed-loop control of properties in metal forming
has had relatively little attention, with just one review of the major
applications to date [144]. However, in other areas of manufacturing
technology, the topic has attracted wider attention. Reviews have
been published on closed-loop control of electro-discharge machin-
ing [166], machine tool feed-drives [169], machine tools [96],
machining [104], robotic welding [197], drilling fibre-reinforced
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plastic composites [165] and additive manufacturing with metal
[175]. These reviews raise common themes which translate to the
challenge of controlling properties in metal forming: because
process behaviour is non-linear, the simplest applications of
proportional–integral–derivative (PID) control can act only over a
restricted range of actuator settings; the sensors are typically
indirect, for example temperatures can be measured only at
component surfaces and often at some distance from the region
of interest, so are usually interpreted via an ‘observer’ model;
because of the non-linearity of the processes, the success of the
control system is strongly dependent on the process model available
to it, and this must trade-off accuracy against solution speed.

2. Classification of control systems in metal forming

All contemporary metal forming machines are equipped with
closed-loop control systems, to ensure that the actuators fitted to
the equipment lead to the anticipated response of the

equipment. This form of closed-loop control is illustrated in
Fig. 5 for a subset of Fig. 4 and is not the focus of this paper: in Fig. 5,
the feedback relates to the state of the equipment, where this paper
considers feedback related to the state of the workpiece.

The closed-loop control of equipment in Fig. 5 is of cou
essential, but is here assumed to be part of the ‘equipment’ bo
Fig. 4: if an actuator request is submitted by the schedule plan
to the equipment, it will be assumed that the equipment is
actuated. Instead, Fig. 6 illustrates two further forms of closed-l
control that could be introduced to the system of Fig. 4, if sen
were available to assess the state of the workpiece (in contras
the sensors on the equipment in Fig. 5).

Fig. 6 uses the notation ‘workpiece sensors’ to indicate sen
that measure the state of the product during processing 

‘product sensors’ to measure the state after both process and p
process are complete which may involve some time delay. Off-
product sensors such as those illustrated in Fig. 6 remain part 

closed-loop (i.e. not open-loop) system, if the system is makin
series of similar parts, and the feedback of product information
be used to improve the production of later products in the sa
series.

Perhaps surprisingly, although to production technologists
on-line and off-line approaches to closed-loop control illustrate
Fig. 6 are quite different, they look identical to control engineer
practice, on-line sensing allows adjustment to a planned sched
during the production of a particular part, where off-line sens
allows adjustment only between parts in the same batch. Howe
in tuning the planned schedule of actuation settings, the sa
questions must be addressed in both cases: what is the b
estimate of the current product state that can be made fr
current and past sensor outputs? Based on this estimate and
comparison to the reference state, how should the plan
schedule be adjusted, taking account of model errors and exte
disturbances?

Section 3 introduces a framework of analysis for closed-l
control of properties in metal forming. In order to retai
connection between the analysis and the realities of metal form
in practice, the analysis is referred to three exemplar proce
which are introduced below.

2.1. Control of sheet metal bending geometry

The process of V-bending [60,90] aims to deliver a target an
of bend after the elastic recovery of material upon unloading. T

Fig. 4. The influence of uncertainties on the outcome of metal forming processes and examples of the physical phenomena involved (z is the state of the product, zr is the ta

state requested by the customer, u are the scheduled actuator settings, x is the current geometry of the equipment or workpiece, u is the current temperature o

equipment or workpiece, t are surface tractions, q is the rate of heat transfer between equipment and workpiece, Dp, Dpp are the model errors of the process and post-pro

respectively, and dp, dpp are un-modelled disturbances).

Fig. 5. Conventional closed-loop feedback control of the state of the equipment (xa

is the current location of any geometrical actuators, ta are tractions created by

actuators, qa is the rate of heat transfer between the actuators and the equipment,

deq are external disturbances).
ma-
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tersFig. 6. On-line and off-line closed-loop control of product properties (zp is the

modified reference state, before the uncontrolled post-process).
springback is controlled by the inhomogeneous plastic defor
tion over the thickness of the workpiece which creates a resid
stress distribution in the bend. Closed loop control of V-bend
has thus been developed to control residual stresses in the fac
uncertainty about incoming material properties and thickn
Most implementations of V-bending, as illustrated in Fig. 7, h
one actuator. However, additional actuators could be introdu
for heating or stress superposition [15]. Similar processes
V-bending include air bending [188], L-bending [200] 

U-channel forming [185], where additional control parame
and actuators, such as binder force, can be incorporated.
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Microstructure control in hot strip rolling processes

ig. 8 is a schematic of the hot rolling process, incorporating
heating of the as-cast slab, reduction by rolling in a reversing
ghing’ mill, finish rolling in a tandem mill, cooling by water
ys on a run-out table and finally coiling.
rocess metallurgists plan a target schedule of reduction and
perature for this process to control the phase and grain size
ibution in the finished coil. However, the temperature at exit
e finishing mill may vary by �100 8C [138] due to variability in

exact sequence of events after the slab is removed from the re-
ing furnace, and because the tail of the rolled strip has cooled in
r longer than the head prior to finish rolling. The problem created

his uncertainty is shown in the illustrative continuous cooling
sformation diagram of Fig. 9.
he planned temperature path shown in Fig. 9 would lead to a

 pearlitic microstructure and high strength. If the starting
erial is cooler than expected, application of the same cooling
ity on the run out table would lead to a lower pearlite content,

as shown a lower rate of cooling could be used to compensate
he lower initial temperature and allow more transformation
re quenching. Prediction of the eventual microstructure
ng from this process is made more difficult by the exothermic
ase of heat during the pearlite transformation, which may
inue within the coiled strip if it is insufficiently cooled.
rators, and therefore closed-loop control systems may attempt
ntrol the microstructure by changing the pattern of cooling on

the run out table. However, an alternative compensation is to
accelerate the finishing mill along the length of the strip, to
increase heating within the deforming strip, aiming to achieve the
planned temperature prior to the run out table.

2.3. Flatness control in strip rolling

The problem of microstructure control in Section 2.2 has been
described as a scalar variation in properties along the length of the
strip, but also occurs across the width of the strip, as the strip edges
will always be cooler than the centre-line. A related spatial
problem in cold strip rolling arises from the deflection of the rolls.
As the strip is deformed plastically, the mill deflects elastically,
with the rolls bending away from the strip at the centre line. If
uncompensated, this leads to a greater reduction in strip thickness
towards the strip edges. In hot rolling this leads to manifest
waviness in the strip known as a flatness defect. However, in cold
rolling where the yield stress is higher, the strip may remain flat
with the profile variations converted into a residual stress
distribution, also called a ‘flatness’ or sometimes ‘shape’ defect.

Fig. 10 shows a range of actuators that have been added to cold
rolling strip mills to compensate for this effect, and two
downstream sensors (for profile and residual stress) that provide
on-line monitoring of the finished strip. During process operation,
mill operators or on-line closed-loop controllers adjust the
actuators to reduce the measured defects.

2.4. Key features of controlling product properties in metal forming

The three exemplar processes described in this section illustrate
the key features of product property evolution in metal forming
which are distinct from other control problems:

� The actuators of metal forming processes have a distributed
influence on the workpiece in both time and space, and there are
constraints on how actuators can be configured;
� Today’s sensors cannot measure all product properties and their

positioning is constrained. Properties vary throughout the

Fig. 7. Schematic of V-bending.

Fig. 8. Schematic of hot rolling from as-cast slab to coiled strip.

Fig. 10. Schematic of the actuators and sensors available in a cold strip rolling mill to

compensate for flatness defects.
. Schematic continuous cooling transformation diagram for a high carbon high

gth steel.

ted from [138].
product, but are usually measured only at the surface.
� Most metal forming processes are non-linear, some properties

have not yet been characterised, and process behaviour is usually
dependent on the current state of the product. As a result process
models are currently slow and imperfect.

The next section presents a consistent framework for analysing
the particular challenges of controlling product properties in metal
forming. The following three sections will use this framework to
explore the three features mentioned here, and Section 7 will
present a survey of applications to date.



 of

�
dt

�

(3)

nty,
and
trol
ced
s.

l is
that
ised

tate

(4)

this
the
ies,
ec-

(5)

 be
uct

 the

the

(6)

erty
 the
me-
tial
me
er,

out

J.M. Allwood et al. / CIRP Annals - Manufacturing Technology 65 (2016) 573–596 577
3. The design and specification of control systems for closed-
loop control of product properties in metal forming

This section starts from the most general statement of the
problem of closed-loop control as a non-linear optimisation
problem. For most metal forming processes, solution of this
problem would be too time consuming to be of practical use, so it
will be simplified in stages, to the point that practical control
systems can be designed and implemented. The full derivation of
the analysis in this section has been supplied as a supplementary
information file, available on-line.

The developments in this section could, with reference to Fig. 6,
apply either to off-line or on-line closed-loop control, and will use
the following definitions (with the convention that italics indicate
scalar variables while vectors are in bold):

� The state of the system z̃ will be described as a scalar function of
space x and time t to simplify the notation, although the analysis
extends naturally to states with several parameters.
� The inputs to the actuators are denoted by u(t).
� The measurements from sensors are represented by y(t)
� The disturbances affecting the state are d(x, t)
� The sensor noise is e(t).

3.1. Process model

The behaviour of the metal forming process in Fig. 6 can at its
most general be described by equations with the form

˙̃zðx; tÞ ¼ f ðz̃; ũ; tÞ þ D̃
f
ðz̃; ũ; tÞ þ dðx; tÞ

subject to gðz̃; ũ; tÞ þ D̃
g
ðz̃; ũ; tÞ�0

(1)

where f is a model of the process, g are constraints (such as forming
limits or actuator limits), and D are model errors. The control
system aims to find a set of inputs, so that the process reaches a
reference state z̃r by solving the minimisation problem,

min
ũ;t

max
D̃

f
;D̃

g
kz̃rðx; tf Þ�z̃ðx; tf Þk þ

Z tf

0
l1kz̃rðx; tÞ�z̃ðx; tÞk þ l2kũ; tk
� �

dt

� �

subject to ˙̃zðx; tÞ ¼ f ðz̃; ũ; tÞ þ D̃
f
ðz̃; ũ; tÞ þ d̂ðx; tÞ

z̃ðx; 0Þ ¼ z̃0ðxÞ
gðz̃; ũ; tÞ þ D̃

g
ðz̃; ũ; tÞ�0

(2)

where d̂ðx; tÞ is a prediction of the disturbances, and l1 and l2

allow a balance between matching the trajectory of the state to a
target and minimising process inputs.

Finding actuator schedule, u, that solves the optimisation in
Eq. (2) would require hundreds of solutions of the complete
process model. For many metal forming processes even one
solution may take weeks of computing time, so while Eq. (2) is easy
to state, it cannot be used in practice in most cases. However, using
a simplified model will increase model error and thus increases the
vulnerability of the process to disturbances, and this reduces the
value of the planned schedule.

Two approaches allow schedule design in practice: firstly, the
time-horizon over which the schedule is planned can be reduced
by introducing feedback into the system; secondly, the model can
be simplified. These are explored in the next two sections.

The solution of Eq. (2) can thus be simplified to the task
finding the optimal inputs over the period from t1 to tf using

minuðtÞ kz̃rðx; tf Þ�z̃ðx; tf Þk þ
Z tf

t1

l1kz̃rðx; tÞ�z̃ðx; tÞk þ l2kũðtÞk
� 

� 

subject to ˙̃zðx; tÞ ¼ f ðz̃; ũ; tÞ þ d̂ðx; tÞ for t1�t < tf

z̃ðx; t1Þ ¼ ẑðx; t1Þ
gðz̃; ũ; tÞ�0

and where ỹðtÞ ¼ hðz̃; ũðtÞ; tÞ þ D̃
h
ðz̃; ũ; tÞ þ eðtÞ

ẑð̇x; tÞ ¼ ‘ðẑðtÞ; ỹðtÞ; ũðtÞ; tÞ for 0�t�t1

ẑðx; 0Þ ¼ ẑ0ðxÞ

This is a form of model predictive control subject to uncertai
but the solution remains challenging because the models 

constraints are non-linear. To avoid this problem, most con
designs are based on a linearised model, which can then be redu
to a finite dimensional model using basis function expansion

3.3. Linearised model

If one complete solution of the non-linear process mode
known, based on a schedule of actuator operation similar to 

required for the target product, then the model can be linear
about this solution and solved rapidly.

The known solution is notated with inputs u and process s
evolution z which thus satisfies

żðx; tÞ ¼ f ðz; u; tÞ for 0�t�tf

Using the notation that z and u are small deviations about 

trajectory, the process model f, the constraints g and 

measurement equation h can be expanded as a Taylor ser
whose first order terms AðtÞ; BðtÞ; P1ðtÞ; P2ðtÞ; CðtÞ; DðtÞ resp
tively give the process model

żðx; tÞ ¼ AðtÞzðx; tÞ þ BðtÞuðtÞ þ D̃
f
ðz; u; tÞ þ dðx; tÞ

yðtÞ ¼ CðtÞzðx; tÞ þ DðtÞuðtÞ þ D̃
h
ðz; u; tÞ þ eðtÞ

subject to P1ðtÞzðx; tÞ þ P2ðtÞuðtÞ þ D̃
g
ðz; u; tÞ�pðtÞ

zðx; 0Þ ¼ z0ðxÞ

This is a time varying, linear model of the process, which could
calculated in advance of process operation once the target prod
and process state are known. If the model is time-invariant,
terms A; B; etc. in Eq. (5) are constant.

3.4. Actuators and sensors

For a forming process with M actuators at locations xa
m, 

linearised process model of Eq. (5) can be written as

żðx; tÞ ¼ AðtÞzðx; tÞ þ
XM
m¼1

bmðx�xa
mÞumðtÞ þ dðx; tÞ 

where b describes the change in the value of a particular prop
throughout the workpiece in response to a (small) change in
setting of the mth actuator. By analogy with conventional ti
domain control, the function b can be described as a spa
impulse response. Experimental trials show that for so
processes, such as the English Wheel and the Power Hamm
this spatial impulse response is remarkably consistent through
 be

ess,
f P)

(7)
3.2. Feedback

The optimisation of Eq. (2) must be solved over the whole
period of process operation. This is an ‘open loop’ approach to
control relying solely on the model to predict system behaviour. An
alternative is to use measurements from the system to estimate
the current state of the product. If the measurements obtained
from process sensors are denoted by y and are a function h of the
state and the inputs, then an estimate of the product’s state can be
obtained using an observer, l.
processing [127]. In this case the process model of Eq. (5) could
solved as a convolution integral.

Following a similar logic for the sensors monitoring the proc
the measurement signal obtained from the pth sensor (in a set o
can be modelled as

ypðtÞ ¼
Z Z

S
gpðx�xsÞzðx; tÞdS þ DðtÞuðtÞ þ D̃

h
ðz; u; tÞ

þ epðtÞ for p

¼ 1; 2; . . .; P 
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re S denotes the surface of the workpiece and gp is the spatial
print’ of the sensor, i.e. the region of the surface over which the
or takes its measurement. As with the actuators, the terms x
xs may be functions of time if the workpiece or sensor are
ing.

Basis function expansion

he discussion above provides a framework for describing the
ation of all components of the closed-loop system. However, a

her step is required in order to assess its performance and to
gn a control algorithm to cope with external disturbances and
rnal model errors. Control engineers examining time-domain
ems make this assessment through use of Fourier transforms:
time domain signals of the control system are transformed

 the frequency domain and the system is assessed by its
city to reject disturbances of various frequencies and
nitudes, for example by use of Bode plots as illustrated in
11.
owever, in addition to such time domain performance, for

t metal forming systems of interest, the state z also varies in
e. Thus an extension to the conventional Fourier transform is
ired.

he state of the process z can be expressed in terms of a spatial
s function expansion as

tÞ ¼
X1
n¼1

qnðtÞfnðxÞ (8)

re fn are a suitable set of orthogonal basis functions,
 as a Fourier series or Legendre or Chebyshev polynomials.
12 demonstrates how on-line measurements of flatness
cts in cold-strip rolling can be expressed as the coefficients
f an expansion using first order Chebyshev polynomials in
(8).
he same basis can be used to expand the spatial impulse
onse of the actuators and sensors, which in practice will be
d-limited’ in the sense that the coefficients of the expansions
q. (8) will approach zero above some ‘bandwidth’ N.

Using this approach, the model of Eq. (5) can be expressed as

q̇ðtÞ ¼ AðtÞ qðtÞ þ BðtÞ uðtÞ þ Df ðtÞ þ dðtÞ
yðtÞ ¼ CðtÞ qðtÞ þ DðtÞ uðtÞ þ DhðtÞ þ eðtÞ

subject to P1ðtÞ qðtÞ þ P2ðtÞ uðtÞ�pðtÞ
(9)

in which the state is now described by the coefficients of its basis
function expansion q, as are the inputs u, disturbances d,
measurements y and errors e.

3.6. Control strategies for linearised models

The control strategy in Eq. (3) aims to minimise the difference
between the current state and a reference or target value. Using the
linearised model, the reference state can also be expressed in terms
of the orthogonal basis functions of the form of Eq. (8) so the
minimisation of Eq. (3) can be restated as

min
uðtÞ

kqrðtf Þ�qðtf Þk þ
Z tf

t1

kqrðtÞ�qðtÞk þ lkuðtÞk½ �dt

� �

subject to q̇ðtÞ ¼ AðtÞ qðtÞ þ BðtÞ uðtÞ þ d̂ðtÞ for t1�t < tf

qðt1Þ ¼ q̂ðt1Þ
P1ðtÞ qðtÞ þ P2ðtÞ uðtÞ�pðtÞ

where qrðtÞ ¼ q̃rðtÞ�qðtÞ
and ˙̂qðtÞ ¼ CðtÞq̂ðtÞ þ DðtÞuðtÞ

þ LðtÞ½yðtÞ�CðtÞq̂ðtÞ�DðtÞuðtÞ� for 0�t�t1

(10)

This form of control design is a model predictive control scheme,
applied over a finite horizon. Eq. (10) define a constrained
quadratic optimisation problem, which can be solved by a number
of standard approaches, and in many cases solution will be fast
enough for use in on-line closed-loop control of metal forming.

For time-invariant linear systems that do not consider either
uncertainties or constraints, the state space model of the system in
Eq. (10) reduces to

q̇ðtÞ ¼ AqðtÞ þ BuðtÞ
yðtÞ ¼ CqðtÞ þ DuðtÞ (11)

Taking Laplace transforms, this can be expressed in terms of a
(multi-input, multi-output) transfer function from u to y,

YðsÞ ¼ GðsÞUðsÞ
where GðsÞ ¼ CðsI�AÞ�1B þ D

(12)

In this case, classical control methods can be used to design a
controller that performs the minimisation in Eq. (10). If the
constraints P in Eq. (10) are ignored and the time horizon is infinite,
the minimisation is achieved optimally by a Linear Quadratic
Gaussian controller obtained from the algebraic Ricatti equation
with a Kalman filter used to estimate the current state of the
process. In the simplest case, if the system can be described by a
scalar transfer function and approximated by a first order time
constant t and a delay td, so that

GðsÞ ¼ e�std
g

ts þ 1
(13)

where g is the gain of the system, then it can be controlled using a
proportional plus integral plus derivative (PID) controller. A key

11. Magnitude component of a Bode plot used to compare customer

rements against disturbances and actuator capability. In this case, the

fication above the bandwidth of the actuators cannot be met.
2. Flatness defects in cold strip rolling and their expression as the coefficients

eries of first order Chebyshev polynomials [46].
benefit of approximating the system using this transfer function is
that the Ziegler Nichols rules can be used to tune the PID controller
without knowledge of the values of the coefficients in the transfer
function.

3.7. Spatial and dynamic bandwidths

Expanding the state in terms of basis functions has shown that
N spatial modes can be changed by the actuators and observed by
the sensors. This means that although the disturbance entering the
process may include components in the spatial modes above N,
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these components are effectively uncontrollable, so N can be
regarded as the ‘spatial bandwidth’ of the process. Each spatial
mode of the process has a dynamic bandwidth, generally defined as
the frequency at which the system response is 3 dB below the
steady state gain. This is illustrated in Fig. 13a which shows the
dynamic frequency range for several modes of the disturbance.
Only frequency components below the dynamic bandwidth can be
controlled for each spatial mode. The combined spatial and
dynamic bandwidths can be represented on a 2-dimensional map,
as illustrated in Fig. 13b. The spatial and dynamic range of the
actuators forms a region on this plot and only those components of
disturbance that lie within this region can be controlled.

For processes that have stationary actuators, in order to control
all N spatial modes of the disturbance, the spatial responses of all
actuators must be linearly independent and M � N, where M is the
number of actuators in the process. If M < N, the N modes cannot
be controlled separately. Similarly, to observe N spatial modes,
P � N where P is the number of sensors.

The design of the controller has been based on a continuous
time model of the process but in practice, it is not possible to
update the optimal control inputs continuously. The optimisation
of Eq. (10) must therefore be solved at discrete times, and the
required form is in the electronic supplementary information.

One final insight created by the combination of spatial and
dynamic bandwidths shown in Fig. 13 is to specify the require-
ments of the process model: if only N spatial modes are controlled,
the model need only predict the evolution of these modes, and

[110,167]. These methods can be extended to non-linear syste
using approaches such as neural networks, fuzzy systems, 

more recently, Bayesian methods, but there is not yet,
underlying unified theory to back up these approaches.

Once system identification has been carried out, the estim
of the parameters are used to design a control system that rem
fixed until the system identification is repeated. An alterna
approach is taken by adaptive or self-tuning systems [11,1
where the results of the system identification are used to upd
the parameters of the control system while the process is runn
in closed loop. In principle, this is attractive, but in pract
because the controller is continually changing, it is difficul
guarantee stability.

3.9. Key features of controlling product properties in metal form

Section 2.4 raised three issues about the challenge
implementing closed-loop control for product properties in m
forming, and this section has demonstrated an approach to each
summary:

� to cope with non-linear process mechanics, the system mo
can be linearised around an expected trajectory of operation a
Eq. (5), so the controller addresses deviations from this path. 

controller can be designed to cope with model errors;
� the derivation here has assumed a scalar state variable, so so

weighting function would be required to balance compe
objectives in a multivariable state;
� the spatial and temporal distribution of responses can

addressed by decomposing the spatial response using b
functions as in Eq. (8) allowing the definition of spatial 

temporal bandwidths in Fig. 13, which in turn create
specification for actuators, sensors and models.

4. Actuators

V-bending at its simplest requires a single actuator wh
motion follows a simple down-and-up path. This actuator could
a mechanical, electromagnetic, thermal or hydraulic mechani
including servo-hydraulic mechanisms which would allow con
of the deformation path. In addition, a coining force can be app
to the bending region at the end of the process to decrease 

springback angle [101]. Temperature may also be controlled
improve the deformation of the material [26,91,124,157]. Rela
processes may have additional actuators, such as the binder fo
in U-channel forming, that can be used to control springback [1

Three features of this narrative set the agenda for this sect

� The performance of the controlled system depends on 

characteristics of the actuators including their dynamic 

sponse, power limits and precision.
� The response of the workpiece to a control signal depends 

just on the actuator, but also on the ‘transfer function’ of 

equipment and workpiece. In the bending example, the mas
the punch limits its acceleration, and its stiffness changes 

distribution of force along the length of the bend.

The quality of the resulting workpiece – the bandwidth of
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must do so sufficiently quickly to allow the discrete form of Eq. (10)
to be minimised within one sample period.

3.8. Parameter identification and model adaptation

The previous sections have discussed how to design a control
system that is robust to uncertainties in the model, but an
alternative approach is to estimate the values of the model
parameters directly from the process. The approach of learning the
dynamic response from data collected from the process is known
as system identification and is well developed for linear systems
disturbances that can be controlled – depends on how 

actuators interact as well as on their separate performance.
These features are also present in the two rolling examples

hot strip rolling: the maximum cooling rate on the run-out ta
depends on the rate at which cooled water can be supplied;
response of the strip depends on its temperature; the effec
sprays at the exit of the run-out table is influenced by the action
those earlier on. In cold strip rolling: the speed of response to
error in strip flatness depends on the speed at which oil can
pumped into the hydraulic jacks; the actuator response chan
with the diameter of the roll and the width of the strip; actua
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 separates the work roll bearings may counter that which
rates the backup roll bearings. In this section, these three

ures are explored leading to an outlook on the potential for
ng actuation to processes in future.

Actuator characterisation

he yield stress of a metal depends on its temperature, while its
ostructure evolves with the history of temperature, strain and

in rate. The actuators used in metal forming processes
efore either add or remove heat, or apply force or displace-
ts at the workpiece surface.
able 1 presents a survey of common actuators organised in
e two categories, and gives indicative characteristics of their
ormance. These characteristics determine their selection
ng process design. For example, in selecting a main drive for
lling mill, motor torque will be the primary design require-
t, but in the V-bending example, many of the characteristics of
e 1 will be relevant.

 small body of work has developed to support the selection of
ators by designers. For any two of the characteristics on the
t side of Table 1, the range of available performance of every

actuator on the left side of the table can be assessed, leading to
actuator selection charts of the type illustrated in Fig. 14.

The chart in Fig. 14, presents a survey of a wide range of
mechanical actuators, including several that are not generally
applicable within metal forming, but excludes electric motors as
their design can cover the whole span of the chart. Any other pair of
characteristics from Table 1 could be used to create a similar map
of options.

An important limit on the degree of actuation that can be
applied in metal forming is created by the workpiece material
itself. In particular, for actuation that adds heat to the workpiece,
the heat can only be applied at the surface (via radiative,
conductive, or convective transfer) or at a short depth into the
workpiece (via induction heating). This boundary heating then
diffuses into the core material at a rate determined by the thermal
conductivity of the workpiece. Forming processes will generally be
most productive if heating is as rapid as possible. However, the
temperature at the workpiece surface must be constrained to avoid
melting or unwanted changes in microstructure. Even if sufficient
power is available in the actuator, the rate at which it can be
applied may often be constrained by such limits.

4.2. Transfer functions between actuators and workpieces

All actuators have some dynamics in time. The delivery of force
or power by the actuator lags behind the control signal requesting
it, due to mechanical or thermal inertia. Furthermore, many
actuating devices (motor, heater, cooling spray) act either on the
workpiece surface or on components of the equipment. In turn the
equipment influences the workpiece surface, via contact condi-
tions, and eventually some region of the workpiece interior is
actuated. This chain of connections between physical actuator and
the workpiece response is described by a ‘transfer function’. For
example, in the case of a robot, the transfer function describes the
dynamic response of several flexible connections each of which has
their own inertia. This function may relate to dynamics in time (as
in the robot example) but may also relate to spatial effects: for
example an actuator acting at a point may lead to a distributed
effect along the length of the component.

Fig. 15 shows an example of a set of spatial transfer functions
arising in cold strip rolling. Each of the actuators acting on the
rolling mill shown in Fig. 10, causes a different spatially distributed
change to the residual stress distribution in the workpiece.

The analytical framework developed in Section 3 allows for
characterisation of these spatial and temporal transfer functions.
Fig. 16 illustrates the disturbances of Fig. 12a and the same
actuator responses as shown in Fig. 15 but now expressed as the
coefficients of a set of basis functions (first order Chebyshev
polynomials.) These are the spatial modes on the y-axis of Fig. 13b.
In this case the response of the actuators is fast compared to the

 1
tors used in metal forming and their characteristics.

Actuator type Characteristics

ce/

isplacement

Motor + ball screw

Hydraulic

Piezo-electric

Electromagnetic/plasma pulse,

explosion

Pneumatic (+switching valves)

Stiffness

Maximum force/pressure

Torque

Power

Stroke (range)

Resolution/accuracy

Resonant frequency

Speed and acceleration

ting/cooling Power supply/DC converter:

conductive heat

High current switch mode –

resistance heat

Laser

Gas furnace

Electric furnace

Induction heating

Spray cooling

Maximum temperature

Maximum power

Frequency

(induction heating)
4. Illustrative ranges of actuator performance organised by the characteristics

ximum stress and strain.

ted from [79,85].

Fig. 15. Spatial response of residual stress in cold strip rolling of aluminium to small

changes in several different actuators.

From [46].
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rate of change of incoming disturbances (the variations in
incoming strip profile, residual stress, and yield stress) so the
response remains virtually constant across all dynamic frequencies
of interest. Fig. 16 illustrates the limits to the quality of control that
can be achieved by this system: most of the available actuator
power is in the second and fourth basis functions – the quadratic
and quartic components of the residual stress distribution; for
higher order disturbances, only the distributed cooling sprays
across the work roll have any actuated influence, and these have
limited power.

The examples used in this section have been mechanical, but
similar discussion would apply to any heating or cooling actuators,
where the effect of a control action is distributed in both space and
time.

4.3. The design of multiple actuator systems

Fig. 13 provides a basis for designing closed-loop control
systems in metal forming with multiple actuators. The customer
specification and process disturbances must be characterised by
the components of their dynamic and spatial modes and this
defines the requirement for actuation. The sensor signal can also be
transformed into power in each frequency and mode, as a result of
which the relevant actuation can be applied to remove the error. If
two or more actuators influence the same mode, the control
system can be designed to share the work between them to avoid
conflict, and the controller must also account for practical limits
(such as non-negative contact forces, or avoiding surface
temperatures close to melting) discussed above.

The control of residual stress or profile in strip rolling is
generally achieved by several actuators, as illustrated in Fig. 16, but
the figure also illustrates two key challenges to designing multiple-
actuator systems.

� The most convenient location for positioning actuators in strip
rolling is at the roll bearings. Typically these are hydraulic jacks
that separate the bearing blocks of the rolls, but the power of
these actuators is concentrated in the same low order modes. The
fact that many actuators have similar responses leads to
potential redundancy in the system, and also a form of

modes. This increases the opportunity to control disturbances
the cost of increased production times.

4.4. Outlook for actuation in metal forming processes

In metal forming, all actuation will be filtered through so
form of transfer function related to the tooling, equipment 

workpiece characteristics, and good design can help in provid
more precise responses. Of the example processes running thro
the paper, the control of profile and residual stress in strip rol
has been given more attention, and generally is subject to m
actuation. This suggests that the quality of strip bending proce
could also be improved by addition of more actuation: actuatio
adjust the die during the punch stroke might help to reduce sh
springback; local actuation at the edges of the workpiece co
compensate for the distributed stiffness of the sheet; distribu
actuation along the punch could compensate for punch w
misalignment or curvature.

Until the customer specification represented in Fig. 13 is f
under control, more actuation will general give higher qua
products. However, this may not be the case if the same proces
used over a diverse range of products, for example if actua
intended to be at the edge of a part are misaligned for smaller pa
or if the response of the workpiece to the actuator varies w
different materials. An interesting opportunity for future resea
is to design processes that have more predictable actu
responses to simplify the challenge of process modelling. Th
illustrated in [127] for the English Wheel which causes sim
deformation in a sheet, regardless of location or current curvat
in contrast to the incremental sheet forming process in which
response is strongly dependent on both history and location.

5. Sensors

The description of spatial and dynamic bandwidths in Fig
proved central to the specification of actuators in the previ
section, and similarly sets the agenda for sensor system des
Regardless of actuator availability, the closed-loop control sys
will be able to remove only those components of the error sig
that can be detected by the sensors. If the sensors can detect a w
bandwidth than can be controlled by actuators, this is redund

V-bending will typically have simple product property sens
Within the equipment, the linear distance descended by 

working punch and the force acting on it, will be monitored, 

this is only to ensure that the equipment follows the ta
schedule. The key final product property is the bend angle a
springback. Fig. 17 illustrates several methods to measure 

parameter that could be incorporated in a closed loop con
system. The figure demonstrates that the measurement can
obtained visually (i.e., optical) or via contact with the specim
(i.e., tactile). Of these methods, measuring pins have been u
most frequently [57]. For example, interrupted bending exp
ments were performed using a linear variable displacem
transducer towards the end of the V-segment to assess variati
in the material properties and thickness [188]. Three interru
during the tests allowed improvements in accuracy of the be

Fig. 16. The power of a set of actuator responses in cold strip rolling, expressed as

the coefficients of a Chebyshev polynomial series [46].
Fig. 17. Various springback angle measurement methods.
‘instability’ in the control system, where one actuator may
cancel out the effect of another.
� It is mechanically difficult to create actuators with significant

power in the higher spatial modes.

These design problems are a challenge for all mass production
metal forming processes, and there remains space for innovation in
finding more local actuation to augment the higher power
actuators that respond to lower spatial modes. Processes in which
the workpiece is deformed incrementally such as spinning, the
English Wheel or hammering naturally use higher order spatial



T
alon
resid
crac
for t
so o

I
scan
flatn
opti
hot 

mea
valid

A

� W
pr
� W

re
� To

of
� Ho

re

5.1. 

A
prod
in F
exis
dete
inte
inte
how
exam
tem
orig

T
may
and 

dire
und
prop
micr
mea
form
(or ‘

T
fam
curr
char
avai

J.M. Allwood et al. / CIRP Annals - Manufacturing Technology 65 (2016) 573–596582
he sensors in Fig. 17 cannot detect variations of the bend angle
g its length. Other product properties of interest include the
ual stresses in various locations in the final part as well as

king and surface roughness at the bend region. Sensors exist
hese properties, but generally cannot operate at on-line speeds
ff-line closed-loop control as in Fig. 6 is required.
n contrast, the sensing applied to strip rolling may include a
ning gauge measuring strip profile, some measurement of
ess (such as the ‘shapemeter’ [168] illustrated in Fig. 10) and

cal temperature measurement. However, the microstructure in
rolling, which is of critical importance to customers, cannot be
sured on-line so must be inferred by an appropriate model and
ated by off-line sensors.
s before, this discussion sets the agenda for this section:

hat sensors are available, and how do these correlate with the
operties of interest in the metal forming?
hat influences the transfer function between the physical
ality of the workpiece and the signal reported by the sensor?

 what extent can process models be used to create ‘observers’
 properties that cannot be measured directly?
w should an array of sensors be designed to match customer

quirements and be consistent with available actuation?

Sensor characterisation

n indicative mapping between process parameters and
uct properties is given in Fig. 59 of [177]. This is expanded

ig. 18 to demonstrate the long chain of connections that may
t in metal forming process between actuation and the eventual
rmination of product properties. The explicit inclusion of the
rface conditions in Fig. 18 is a reminder of the two-way
raction between equipment and workpiece, in determining

 the product properties evolve with new actuator settings. For
ple, if the workpiece is already hotter, an increase in tool

perature may cause less change, than if the workpiece were
inally cool.
he consequence of Fig. 18 for closed-loop control, is that there
 be a significant disconnect between what sensors can detect,
what actuation may be applied. In controlling the speed or

ction of a vehicle, sensors can measure directly the variable
er control, and actuators act directly to change it. Many of the
erties in metal forming (particularly those to do with the
ostructure) cannot be measured directly, or cannot easily be
sured non-destructively or on-line. The sensing of metal
ing processes is thus linked to the provision of process models

observers’).
able 2, arising as with Table 1, from a survey of processes
iliar to the authors, gives a representative set of sensors in
ent use in metal forming processes and lists some of the
acteristics that are important in selecting between different
lable sensors for each application area. As with the classifica-

tion of actuators earlier, any two of the characteristics in the right
hand column of Table 2 can be used to create maps to compare
available sensors for particular applications. Fig. 19 shows an
example.

Section 2 drew a distinction between on-line and off-line
closed-loop control, which largely arises from the availability of
sensors. Table 2 lists only sensors that can be used on-line, and
many other forms of sensing such as microscopy or X-ray analysis
can be used off-line. Innovations in sensor technology are

Table 2
Sensors in current on-line use in metal forming and their characteristics.

Sensor type Selection characteristics

Actuation and

equipment

condition

Strain gauges and load cells

Linear/rotary distance encoders

and transducers

Voltage and current metres

Stiffness (or equivalently

resistance or thermal

inertia)

Natural frequency

Range

Resolution

Accuracy/Repeatability

Linearity

Sampling frequency

(or frame rate, or speed)

Spatial resolution

Robustness to practical

on-line conditions

Interface

conditions

Pressure and friction sensors

Workpiece

conditions

Surface temperature (infra-red

camera, optical pyrometry,

thermocouples)

Surface strains/strain rates

(digital image correlation,

photon Doppler velocimetry)

Microstructure

properties

Textures (electron backscatter

diffraction)

Mechanical

properties

Hardness ductility (on-line

hardness testing, X-ray

diffraction, magneto-inductive

tests)

Damage (thermography,

ultrasonics, radiographic

inspection, vibrometry,

acoustic emissions, eddy current

techniques, magnetic leakage flux)

Residual stress (‘‘shapemeter’’)

Surface

properties

Surface morphology (white-light

interference microscopy, tactile

profilometer, photometry, laser

triangulation, electronic speckle

pattern interferometry)

Fig. 19. An example sensor selection chart organised by frequency and range.

Adapted from [156].
Fig. 18. Product properties in metal forming.
gradually allowing more deployment of on-line sensors. However
a key characteristic mentioned in Table 2 is the need for physical
robustness. The forces required to deform metal are high, and
many processes operate at high temperature and may use fluids, so
the need for physical robustness is an essential – and currently
limiting – requirement for many emerging sensor designs.

5.2. Transfer functions from workpieces to sensors

Section 4.2 introduced the idea of a transfer function for
actuators. Similarly, most sensors act at some remove from the
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workpiece. Between the sensor and the workpiece properties of
interest, is some mechanical or thermal inertia or stiffness.

This form of transfer function associated with sensing is
illustrated in Fig. 20 which shows several sensors designed to
measure the surface contact tractions in rolling. The sensors would
be damaged if making direct contact with the workpiece so are
embedded some distance below the surface of the roll. In effect all
designs respond to deflection, rather than stress, and by inspection
it is clear that the deflection around the sensor depends both on the
elastic deformation of the roll, and the whole distribution of
contract tractions through the roll bite. This can be described by a
transfer function, but limits the resolution of sensing. Even a
hypothetical impulsive force acting on the surface of the roll would
appear to be distributed over some area.

A second example of this form of transfer function in sensing
product properties is shown in Fig. 21. Longitudinal residual
stresses in cold strip rolling are measured on-line by deflecting the
strip over a ‘shapemeter’ – a set of narrow rings, mounted coaxially
on a stiff core. Each ring deflects in response to the component of
residual stress normal to the axis of the rolls. As the figure shows, a
theoretical impulse in residual stress would cause several rings to
deflect. This is the spatial footprint g in Eq. (7). If this footprint is
known, the original signal can be recovered by solving Eq. (7).

The two examples of this section have demonstrated that even
for a single sensor, a model is required to characterise the transfer
function from workpiece properties to sensor output. The next
section extends this use of models to consider the estimation of
properties for which no direct sensor is available.

5.3. Observers: models to estimate what cannot be sensed

product properties listed in Fig. 18 and the list of available sen
in Table 2 further demonstrates that many properties cannot ye
sensed during process operation. In particular, sensing of 

distribution of microstructural properties and damage through
core of the material is only now being developed [177].

The precursor to this paper, Tekkaya et al. [177] suggests that
possible to develop observers to predict many interior proper
based on observations at the surface. For example, the wid
adopted JMAK relationships [13] predict the evolution of grain 

from an estimate of an initial microstructure, several mate
related parameters, and the history of temperature, strain and st
rate experienced by the workpiece. These variables could be infer
from measurements of surface temperature and position over ti
and Table 2 lists several options for providing these measureme
A similar argument suggests that interior damage evolution coul
future also be predicted from surface measurements.

5.4. The design of sensor systems

Section 4.3 revealed that actuators should be linearly indep
dent and ideally orthogonal, to avoid a spatial instability with 

actuator cancelling out another. For sensor array design 

problem does not occur: if two sensors created essentially 

same measurement, they could be used in tandem to estimate
uncertainty in the property under consideration. However, in or
to monitor M spatial modes, the system must have at leas
sensors whose spatial footprints are sufficiently independen
allow decoupling of each mode. This is the case for the shapem
illustrated in Fig. 21: if there are M segments on the shapemete
will be able to report error signals up to the first M spatial mo

Many of the sensors listed in Table 2 are scalar. However, so
may scan across a workpiece, and those using imaging such
stereo-cameras or optical pyrometry for example, report ima
over a wide area. In this case, the spatial resolution of the senso
likely to be much greater than that of the actuation available to
on-line control system, and the signal must be filtered to prov
information only for those spatial modes which can be control
For line-scanning devices and imaging systems, the time betw
samples defines the maximum dynamic frequency that can
sensed with accuracy. Any variation in the error signal at hig
frequencies will be unobservable.

5.5. Outlook for sensing in metal forming processes

A typical configuration of sensing for strip rolling 

illustrated in Fig. 10, comprising a scanning profile gauge, a st
thermal imaging camera, a shapemeter and force, torque and sp
sensors on the rolls. With additional sensing on the temperatur
the incoming strip prior to rolling, an observer could estim
changes in the grain size distribution in the strip.

Such observer based control has already been developed for
hot strip rolling problem in Fig. 8 and will be described in Sec
7.4 below. In future, it is likely that new on-line sensors
example for hardness, or surface grain size will be developed
allow a richer feedback into the observer model, and therefo
greater potential to eliminate unwanted deviations from custo
requirements.

6. Models

Fig. 20. Sensors for measuring contract tractions in rolling.

From [53] which gives further references for each different design.

Fig. 21. The transfer function of a ‘shapemeter’ in cold strip rolling.
 for
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As yet, no sensors exist which in on-line conditions ‘see’ within
the bulk of a metal workpiece: even X-ray sensing of residual stress
penetrates only a few millimetres beneath the surface. Therefore,
controlling properties in the interior of a workpiece can only be
attempted if a model, an ‘observer’ in the language of control
engineering, can predict the interior properties from those sensed
at the surface. For bulk products, or in processes such as deep
drawing where a sheet is closely contained within tooling and only
a limited part of the workpiece is ‘visible’ to sensors, properties
elsewhere in the workpiece must be inferred. Comparison of the
The role of process models in closed-loop control systems
metal forming has permeated the discussion of this paper so
Section 3 demonstrated that, except in the case of the simp
scalar systems with near linear behaviour (typically the sl
variations of a single parameter around a known set-point) 

application of control depends on a process model to allow 

selection and optimisation of future actuator set-points. Sectio
introduced the idea of a transfer function between the contro
actuator and the response at the workpiece. Section 5 simil
discussed transfer functions associated with sensors, and 
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er demonstrated how interior product properties can only be
rolled if they are predicted by an ‘observer model’.
odels are thus central to closed-loop control in metal forming,

developments in materials characterisation, in the theory of
ticity and damage, and the development of advanced
erical models are continuously enriching their predictive
ty. However, the highly non-linear material behaviour
ciated with metal forming, the coupling of phenomena at
rent scales, and the large geometric changes experienced in
rmation all mitigate towards the use of numerical models, in
ch variables are described by discretisation, usually involving a
 mesh of discrete values. Thus, as model sophistication has
eased, despite the progress of computer speed according to
re’s Law, the solution times for metal forming process models

 remained high. Increases in computing power have generally
 absorbed by increasingly refined models, and for almost all
tical processes of interest, model solution times remain much
er than process operation.
he challenge of modelling for closed-loop control is thus to

 acceptable degrees of model approximation that reduce
tion times so that optimisation methods can be applied on-

pplications of closed-loop control of V-bending to date have
nly used the most simplified modelling approach with a PID
roller adjusting punch depth to compensate for springback in
bent angle. Several models have been used including neural
orks or fuzzy logic [29,14,55,56,83], regression analyses [129]

 simple on-line database of punch force [199], to control
ngback. In another study, FEM along with Taguchi and analysis
ariance (ANOVA) methods were used to assess the process
meter that had the most affected on springback, i.e., material

kness [179]. Alternatively, analytical models for predicting the
ing angle and forces have been developed which could be

 for closed loop control of the process [50,174,187], including
ature representation under the punch nose [42].

n strip metal rolling, models of property evolution have been
ely used to design schedules of reduction and temperature

ry to create preferred grain size distributions through the
. Early work in this area [19] has expanded significantly, as

ewed in [177]. Most of this work is applied off-line, but recent
ications [138,141,192] have used on-line models. Simplified
els of flatness defects have been developed since the 1970s
] and are in regular use in mills both for on-line control

ems, and for actuator setup as each new strip is presented at
entry of the mill.
he agenda for this section is therefore to identify what is
ired of process models to be useful for on-line control, and to
uate how existing approaches meet these requirements.

Model requirements

ection 3.2 presented a generalised mathematical form for the
ed-loop control of metal forming processes. If on-line solution
e optimisation problem takes a time T, then this defines the

ple time of the controller, so the dynamic bandwidth of the
rol system is limited to variations which occur at frequencies
r than 1/2T. In some processes this is useful. For example, in a

e batch deep-drawing process producing the same product
 many days, it may be useful to solve the optimisation problem

the maximum magnitude of the disturbances that can be
controlled. Alternatively, given knowledge of the disturbances, it
would be possible to specify the required trade-off between model
solution time and error, S. As yet this analysis has not been
developed, but would be a useful contribution to the design of
future closed-loop control systems, and the approach could be
extended to incorporate the value of increasingly accurate sensor
feedback in improving the quality of model predictions at a given
solution speed. Nevertheless, a broad range of modelling
approaches are available, so the next section can at least describe
qualitatively the development of the model quality function S.

6.2. Classification of models

A representation of existing approaches to modelling property
evolution in metal forming is presented in Fig. 22. The x-axis
indicates a qualitative description of resolution, from scalar
description of a single measure to finely resolved numerical
representations. The y-axis illustrates the degree of approximation
used in modelling, from the simplest linear variation around a set
point to the most detailed multi-scale representation of micro-
structure. The curved contours are illustrative lines of constant
solution speed, each showing a trade-off between resolution and
approximation, with speed increasing towards the top right of the
image.

As well as many PID control examples, the other common
approach to process modelling for on-line property control to date
has been the use of meta-models such as artificial neural network
or response surface methods. These approaches draw on a
database of past experience, acquired by numerical or experimen-
tal approaches, to interpolate a prediction of process behaviour at
current operating points. This is efficient for behaviour in an
operating region similar to that tested, but has little predictive
capability. Future developments may allow the combination of
these statistical approaches with analytic methods, to improve the
probability of successful prediction in previously untested
operating areas.

Fig. 22. The trade off between model solution speed and accuracy, illustrated for

currently available modelling techniques, and their application to date for on-line

closed loop control of product properties.
adjust the actuator settings during the batch. However, in
ral, full solution is too time-consuming, so some form of
el approximation is required.
he term for model error D in Section 3.1 provides a basis for
uating the trade-off between model accuracy and speed. Given
nge of approaches to developing a process model, including
rent choices about model resolution and simplification, there

 be some function that relates model solution time to model
r, say, Tmodel = S(D). The sample time of the control actions T

t be greater than this (T > Tmodel) so for each model design, it
ld be possible to solve a form of Eq. (2) to allow prediction of
6.3. Outlook for on-line process modelling in metal forming

The need for rapid solutions to allow on-line control has driven
the use of linearised models in most existing applications. Current
applications in both V-bending and strip rolling typically use off-
line non-linear modelling to predict the setpoint for some
production run, and calculate sensitivities of the properties to
variations in actuator settings around this setpoint to create a
linear model for on-line use.

The plot of spatial and temporal bandwidth in Fig. 13 which was
used in the previous two sections to describe requirements for the
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design of actuators and sensors also provides an interesting
inspiration for future model development. If the control system is
designed only to remove disturbances within a particular spatial
bandwidth, then the required model needs only to deal with spatial
modes below this threshold. Thus, although the non-linear
behaviour of deforming metal and of the interaction between
workpiece and equipment in forming processes is generally
characterised with finely resolved numerical meshes, it may be
possible to develop simplified process models in future which
predict only the behaviour of those modes which are to be
controlled. For example, if a rolling mill has only sufficient
actuation to control parabolic and quartic components of
disturbance to cross-directional properties (profile or flatness),
for the purposes of control, there is no value in the model
predicting higher order responses.

While the focus of this section has largely been on the trade off
of speed and accuracy, future control of microstructural properties,
depends on the development of new understanding. There is as yet
no fundamental model able to predict for a general metal the
evolution of microstructure with processing parameters, and
ongoing improvements in metallurgical understanding will allow
greater breadth of control in the future. The fact that this requires
the coupling of phenomena at atomic scale (for example related to
diffusion) with those at macro scale (the interaction between
workpiece and equipment) illustrates how much future modelling
development is required before the idealised optimisation model
in Section 3.1 can be solved for every product property illustrated
in Fig. 18.

7. Applications

The paper so far has been structured to present a framework for
understanding present and future closed-loop control systems for
product properties in metal forming. This section now returns to
review current applications across the full range of metal forming
processes.

7.1. Closed-loop control of properties in sheet bending

Sheet bending aims at a precise angle of bend, but must cope
with uncertainties in incoming sheet geometry and properties.
Several closed-loop control systems have been developed, with
actuators that typically allow a variable punch depth, and sensors
of many designs that measure the bending angle either between
parts in a series, or between multiple punch strokes for one part.

In an early approach [199] the force–displacement relationship
during the V-bending operation was monitored, and recorded in a
database. A fuzzy-controller was then used to relate each new
incoming material to all previous bending operations, and predict
the depth of stroke required to achieve a required angle after
springback.

Two control systems for air-bending have been developed with
the form of Fig. 23 [81,188]. Both took an incremental approach to
achieving a target bend angle: the punch descends to create a
partial bend, then withdraws once [81] or three times [188] to

allow measurement of springback. The force displacement cu
angle of bending and angle of springback are measured during
partial bending, and used to characterise the workpiece mate
This allows calculation of the final stroke required to achiev
given angle. In contrast to the statistical approach of [199] 

method of [81,188] can be used for any material, regardless of h
many times it has been tested previously. Both studies report an
variability reduced to �0.58, and the required calculation
sufficiently rapid to allow industrial application.

A modification of the approach in Fig. 23, intended for m
production is to use a double sided punch, first over-bending, 

then reverse bending to the target angle [184]. A regression mo
is used to predict the required strokes to achieve the target an
based on samples over a long series of production. A differ
configuration designed for bending high strength steels, wh
have particularly high spring-back uses a progressive die set, w
an induction heating station ahead of the bending sta
[111]. Closed loop control adjusts the temperature in 

workpiece just prior to bending, to modify the final angle a
springback.

7.2. Control of geometry in roll forming

Roll forming [69] is subject to the same uncertainties as sh
bending, but is a continuous process. The bend angle can thu
measured only after production has begun, for example by la
triangulation. Errors in the angle can then be compensated
adjusting the angles of the bending rolls as shown in Fig. 24.

A closed-loop control system has been developed with a Sm
Predictor to compensate for the (known) time delay betw
actuation and measured response. In trials with a high-stren
steel U-profile part, the closed-loop calibration system show
springback reduced from up to �38 with an open-loop model ba
design to a deviation of �0.28 of the target angle [66].

A recent extension has been to roll-form Tailor Rolled Bla
with variable material thickness to allow weight minimisatio
tool and control concept to adjust the vertical and horizontal ga
track sheet thickness, is illustrated in Fig. 25.

Roll forming of dimensionally stable profiles from TRBs nee
local over-bending of the areas with lower sheet thickness 

thus with higher springback potential [17] and can be used wi

Fig. 24. Closed-loop calibration system integrated in a conventional roll form

line for U-profiles [66].
Fig. 23. Two-step bending for high precision angle. Fig. 25. Motion required for roll forming of Tailor Rolled Blanks [170].
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ially designed calibration stand [75] to improve the geometric
racy of the profile.

Control of geometry in section and tube bending

ection and tube bending also faces uncertainties of incoming
erial geometry and properties, but must operate within
tional constraints to avoid wrinkling (on the inside of the
) or cracking (on the outside). The development of actuation

his application is linked to the design of new processes aiming
void these constraints. However, the sensors and control
rithms of the previous two sections can be applied similarly to
eve the target distribution of bend angle.

 conceptual process window for section/tube bending is
n in Fig. 26, demonstrating that both failure modes become

nger as the bending radii reduce, with conventional three roll
ing constrained to radii above around 1.5 times the tube
eter. Below this radius, at ‘[C]’ in the diagram, a different

ess design, such as ‘shear bending’ is required [59]. The more
ngly the tool constrains the flow of material, the more likely
occurrence of a crack. If the tools constrain material flow more
kly, wrinkling or buckling is more likely.
he industrial benefit of developing processes with tight
traints close to point ‘[A]’ in the process window is clear,
this has stimulated a raft of process innovations. A novel
oach is to extrude the tube through a die, which itself is moved

tive to the axis of incoming material to create bending
]. The complete containment of the tube as it is bent allows the
tion of tight radius bends without wrinkling or cracking. Other
esses with tight constraints on the tool include rotary draw
ing [190], the Revolute, Prismatic, Spherical and Revolute

ts parallel mechanism [173], a 2D die-less U-bend method with
ine control software [99], and the 3D hot bending and direct
ch technology [158]. In this approach the tube is supported by

bot and the bent portion is rapidly heated by an induction coil,
wed by quenching in water, to attain a high tensile strength.
n alternative to these processes requiring close encapsulation
e bend is the Torque Superposed Spatial bending process [76]
hich the workpiece is brought to yield by an axial torque,
ing greatly reduced bending forces and hence much less

springback than other methods. Fig. 27 illustrates the application
of closed-loop control to this process to achieve a specified profile
despite uncertainty about product properties.

The figure shows how on-line (or direct) closed-loop control is
augmented by the use of process simulation (or indirect control)
which calculates a modified target for the part based on current
estimates of material properties. Various sensors have been
developed including an array of displacement sensors for
measuring product curvature, load cells on individual rolls and a
wheel-shaped sensor with strain gauges to measure torque and
bending moments applied to the workpiece.

7.4. Control of microstructure and flatness in strip rolling

Three product properties in rolled-strip metal have been the
focus of closed-loop control system development: the centre-line
thickness (or gauge) of the strip in both hot and cold rolling; the
distribution of residual stress and thickness (flatness and profile)
across the width of cold-rolled strip; the microstructure of hot
rolled strip. Each is considered in turn.

The first control system for gauge in a tandem mill used a non-
interactive approach to decouple the effects of roll force, gauge,
rolling speeds and interstand tensions between the stands of the
tandem mill [27]. This assumes that the process operates
sufficiently close to a known operating point that it can be
described as linear, in which case a non-interactive network can be
solved to allow independent single-input single-output control of
the gauge and speed of the strip at exit from each stand. A review of
developments in more than three decades following this work [35]
includes the development of different control algorithms (such as
H1 methods, optimal and model predictive control schemes) and
various plant representations (such as adaptive models, auto-
regressive (ARMAX) tuning algorithms, neuro-fuzzy control and
the use of model based observers.) The relatively high frequency of
response of mill screws, combined with the lower frequency
disturbances to rolling, has allowed effective control of strip gauge,
so that today’s systems are more than able to meet customer
requirements. An earlier review describes developments in gauge
control in hot rolling, with a particular focus on those developed in
Japan [172]. For a problem closely related to gauge control, the
effect of interstand tension on the forming behaviour of rolling flat
wire from round wire was examined experimentally [159] leading
to development of an appropriate control system [100,131].

The flatness defects introduced in Section 2.3 arise from non-
uniform reductions across the width of the strip due to the
deflection of the rolls and mill stand under the high forces of
rolling. A review of early work on strip flatness was motivated by
the invention of controllable work and backup roll bending
actuation [155]. This includes several attempts to develop on-line
sensors for flatness defects and a subsequent survey, distinguishes
contacting and non-contacting sensors [58]. For hot rolling,
flatness defects are generally visible, so non-contacting optical
sensing is typically used, such as on-line cameras that monitor
projected-fringes [43]. For cold rolling, flatness defects lead to
invisible residual stresses. A range of approaches has been tested to
detect these residual stresses on-line, but in practice the use of
deflecting narrow rotors (as described in Section 5.2) has become
dominant [168]. The actuators used to control flatness defects are
illustrated in Fig. 10 including bending jacks [155], Continuously

Fig. 26. Process window for shape/tube bending.
7. TSS bending process: (a) Composition and (b) outline of closed-loop control
Variable Camber intermediate roll shifting [89,92,128,150] and
water sprays for roll profile control [18,12]. Some further actuation
has been developed in research, but not been transferred widely
into practice. For example, one-end tapered work roll shifting was
used on a 12-high cluster mill for rolling hard materials [176]. One
of the first models capable of predicting flatness defects [47] was
based on a combination of a segmented plane strain model of
rolling and an elastic model of mill deflection using influence
functions [160]. This was further developed [4,118] with the elastic
deformation of the strip outside the roll bite also incorporated
[180] and many other developments [45]. The first control system
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for flatness, assumed that the frequency of response of the
actuators is so much faster than the frequency of uncertainty in the
flatness along the strip that the control system can operate without
any time dynamics [168]. This was extended to allow for simple
dynamics in flatness control in a 20-roll Sendzimir mill [61], with
eight actuator settings to control the bending of the 20 rolls (in
groups) related to the components of the measured flatness defects
as characterised by eight polynomial basis functions. A more
generalised analysis of the flatness control problem, uses a basis
function expansion of Chebyshev polynomials up to the order of
polynomial that can be detected by any particular shapemeter
[46]. Flatness defects have been characterised with three
polynomial basis functions using a genetic algorithm and neural
network for control [109], a single basis function of parabolic
variation of profile (or ‘crown’) controlled with strip gauge using a
two-term MIMO controller [108], or by use of a learning algorithm
to predict the sensitivity of flatness to actuator setpoints
[189]. Current performance of flatness control systems in hot
rolling is limited largely by the difficulty of applying finely resolved
sensing in the hostile environment of the hot rolling mill. In cold
rolling, performance is constrained by the limited bandwidth of
actuation. Thermal spray control [12,18] allows control of higher
spatial ‘frequencies’ (polynomial terms) and is applied in industrial
practice, but has a relatively slow response and limited power.

Most microstructure control systems developed to date for hot
strip rolling aim to influence the temperature history of the hot
rolled strip in Fig. 8 as it passes through the run-out table. Initial
work [138] aimed to control the temperature at cooling, but recent
effort considered the temperature history from exit of the hot
tandem mill to coiling. Modelling of recrystallisation, grain growth
and phase change during hot rolling dates back to 1979 [154]
which allowed the first prediction of the effect of rolling
parameters on microstructure. This approach was greatly extend-
ed [19] leading to the rich body of today’s knowledge [177]. Optical
pyrometers are widely used to measure temperature at the mill
exit and prior to coiling, and in some cases are also used in the
middle of the run-out table, although this is constrained by the
spray and water sitting on strip surface. A typical system aims to
achieve on-line control of temperature at coiling, using a fuzzy
logic algorithm to predict the transfer function from water spray
intensity to strip cooling [195]. However, even if the coiling
temperature is perfectly controlled, product microstructure may
be disturbed if the temperature history of the strip has varied from
that planned, as illustrated in Fig. 9. More recent developments in
closed-loop control of temperature in hot strip rolling have
therefore aimed at microstructure not just coiling temperature.
Production of high-carbon (0.85 wt%) steel requires rapid cooling
on the run-out table from mill exit temperature to between
500 and 600 8C, holding at this temperature for at least 4 s to allow
transformation from austenite to pearlite, then quenching and
coiling [140]. The required temperature profile can be maintained
more accurately, through use of variable heat flux actuation on the
run-out table [138]. The proprietary system illustrated in Fig. 28
controls not just the water sprays but also the speed of rolling in
the finishing mill [192]. This allows a more consistent temperature
at the entry to the run out table, and hence simplifies the

requirements for the control of water sprays. Coupling this on-
system to an off-line prediction of microstructure evolution (g
size, recrystallisation and phase transformation) allows appro
ate set points to be chosen across a range of steel grades. Wit
the context of this paper, the control system in Fig. 28 is
important demonstration of how future closed-loop con
systems in metal forming can aim to compensate for disturban
that influence both product geometry and microstruct
properties.

7.5. Control of geometry and microstructure in hot ring rolling

Hot radial–axial ring rolling, operates with uncertainty o
workpiece temperature due to cooling in air and heating du
deformation, and must avoid two key process constrai
mechanical instability leading to non-circularity; unconstrai
material flow leading to geometrical defects (fishtailing, wavin
conicity, cavity and dishing) [7,8,34,105]. Unlike hot strip roll
ring rolling equipment does not have thermal actuation 

heating or cooling) but the rate of deformation can be adjus
through actuator motion. Ring geometry (and sometimes temp
ature) is monitored through non-contact sensors. Process mo
for ring rolling must deal with transient conditions through
processing, so solve slowly, and as a result closed-loop contro
largely limited to tracking a planned schedule of actuator mo
[94] as illustrated in Fig. 29: feedback from tool position senso
used to achieve the planned reduction schedule, and guide 

forces are adjusted to control the ring centre.
Current sensors of ring geometry are typically scalar, so n

approaches based on on-line cameras are being developed. On-
cameras and image-processing software can be used to detect
full two-dimensional geometry of the ring during process
[10,123], and continuous laser measurements of the outer sur
of the ring during processing can detect form errors [95]. Ther
imaging can also be used to monitor ring surface temperature w
accuracy of �2% of actual temperature if surface oxide formatio
avoided [80].

Finite element models can predict the evolution of str
strain-rate and temperature (the drivers of microstruct
change) throughout the volume of the ring [145] and have b
extended to predict void accumulation using Oyane’s crite
[191]. These models show that the effects of the control
parameters in Fig. 29 are strongly interdependent but h
different distributional effects through the ring. Simplified l
arised models are therefore unlikely to be valuable.

As yet no implementation of on-line closed-loop contro
microstructural properties in ring rolling has been repor
although new forms of ring geometry control are emerg
[37]. However, the components of the required system are
under development, and existing control algorithms can be app
to finite element simulations of the process, to reveal h
geometry control also influences ring temperature distributi
[87,205]. The addition of thermal actuation in future could al
the form of compensation used in hot strip rolling to achiev
target microstructure even in the presence of thermal dis
bances.
Fig. 28. Comprehensive temperature control including control of rolling speed to

adjust mill exit temperature.

Adapted from [192]. Fig. 29. On-line closed-loop control of equipment in ring rolling.
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Control to avoid tearing and wrinkling in deep drawing

eep drawing processes must operate with uncertainty in
ming material and variations in friction between workpiece
tools, and must avoid the two product failure constraints of
kling and tearing. To address this, the number of actuators
 to control the distribution of blankholder pressure around the

kpiece is steadily increasing, and new sensors are being
loped to monitor material flow and stress during the punch

ke. Emerging closed-loop control strategies are being devel-
 to adjust the distribution of blankholder pressure to achieve a
ified distribution of perimeter flow, although due to process
plexity these aim to track schedules developed through off-
models.
wo approaches have been taken to adding actuation to control
erial flow in the blank-holder: segmenting the blank-holder or
ating the draw bead. Distributed control of the binder pressure
nd the perimeter of the part may be achieved by use of many
pendent hydraulic [161,196] gas spring [68,163] or piezoelec-
actuators [116] as illustrated in Fig. 30.

 consequence of applying actuation around a segmented
k-holder is the need for new designs of the binder [74]. There
many options for this and it can also provide improved
lisation of the segmented forces [194]. Alternatively, an active

-bead control system can be used to control the perimeter
e restraining the workpiece [24,28]. This approach has been
onstrated for an industrial part, using hydraulic actuation of
ented draw-beads [22].

he main developments of sensors to allow control of deep-
ing have focused on monitoring the flow of material through

blank-holder during the stroke of the punch. This can be
eved with linear displacement transducers [162], laser
gulation [25], a roller ball, a non-contacting optical sensor

, by non-contacting induction coils [115], Eddy-current
ors [130] or with an array of piezo-electric sensors mounted
er a protective layer near the surface of the tool [3]. Table 3
ides a summary of the various sensors in current development
easuring material flow, although several have yet to be tested

ndustrial robustness.
n addition to material flow, several other variables can also be
itored in deep drawing operation as illustrated in
31. Opposed displacement transducers can be used in the

er and lower binders to monitor the height and wavelength of

wrinkles, or the binders can be mounted on piezo-electric load
cells, to monitor frictional forces [28]. Infrared thermography can
be used to contrast the temperature distribution in each
component with its predecessor, as a means to predict changes
in process operating conditions [178]. A mini bulge test [125]
allows on-line monitoring of material hardness during deep
drawing. A novel sensor can be embedded in the perimeter of a
deep-drawing punch to estimate wall stress in the part during the
deep drawing stroke [23], or a ‘borescope’ (a small CCD camera
which can be placed inside a small space between the tool cavities)
can be used to monitor the three-dimensional deformation of the
sheet during the punch stroke, for example to monitor wrinkles
developing inside the blank-holder [70].

The existence of these new actuators and sensors enables two
forms of control action during each punch stroke: the average
blank-holder force can be varied as the punch descends and the
distribution of blank-holder force around the perimeter of the part
can be adjusted. A typical control scheme to achieve this is shown
in Fig. 32, with an inner loop controlling the blank-holder forces to
match a schedule created by an outer loop which controls the
flange draw-in.

Early work on blank-holder control largely assumed a single
blank-holder force applying uniformly around the binder, and
aimed to establish safe trajectories between the limits of wrinkling
and tearing [132]. For example, there is an advantage to having the
blank-holder force decrease through the punch stroke
[181]. Higher perimeter forces are required early in the stroke,
and these should be reduced as the part is formed [24,67,161]. The

Table 3
Evaluation of sensor systems used in deep drawing [186].

Sensor Advantages Disadvantages

Displacement

transducer

Reliable Loading capacity

Geometrical limits

Roller ball Capsuled integration

into tool;

Detects flow direction

Risk of dirt

Weakens tool

Piezoelectric

thin film

High resolution and

measuring sensitivity

Sensing over an area

Extensive signal processing

Complex assembly

Optical sensor Capsuled integration

into tool

Detects flow direction

Risk of dirt

Weakens tool

Workpiece material

dependency

Laser triangulation Contact free

Simple assembly

Risk of dirt

Geometrical limits

Inductive coil/

Eddy current

Integration into tool

High resolution

Signal processing

Calibration required

Weakens tool
Fig. 30. Actuators for control of material flow in deep drawing. Fig. 31. Sensors to monitor material flow in deep drawing.
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tendency to wrinkle is reduced when there is less unformed
material left in the binders, but the risk of tearing increases.
Nevertheless, higher perimeter forces help to reduce springback.
Artificial neural networks [119] and fuzzy control algorithms [120]
have been used to examine the deep-drawing of a cup with
variable punch speed and blank-holder force. This leads to
improved production speed and higher drawing ratios when both
punch speed and blank-holder force are varied optimally,
compared to a reference case with constant values. A system for
control of segmented blank-holders, with the force adjusted to
control material flow along twelve radial lines towards the centre
of a representative non-symmetric part has been developed
[97]. An ARMA model of process behaviour has demonstrated
(in a process simulation) how the forces in a segmented blank-
holder can be controlled to achieve a constant (small) height of
wrinkling within the binder [98] and this has also been shown in
practice [204]. Related approaches have used a genetic algorithm
[203] or a control scheme based on modelling rather than
estimation [51,52]. Flange-draw was monitored in these trials
during drawing of a square cup, and the blank-holder pressure
adjusted (through adjusting fluid pressure in a series of cavities
within the binder) to match the draw-in to a target determined
from finite element simulations. The multi-input multi-output
control scheme is based on process gains calculated by finite
element analysis of the process, which can be re-calculated for any
different workpiece properties or tooling. A detailed finite element
model has been used to predict the sensitivity of the thickness
distribution in a representative part to variations in the blank-
holder force trajectories in each of ten independently controlled
segments around the part [106]. This is arduous, but because of the
richness of the resulting sensitivity matrix, is likely to give better
performance than the statistical methods above.

Development of closed-loop control of deep drawing to date has
largely been at laboratory scale, to demonstrate feasibility. All of
the published reports discussed above involve monitoring material
flow (as shown in Fig. 32) or the part wall stress and using the
distributed actuation to adjust these variables to match previously
determined master curves. However, while this reduces the
complexity of the control problem, it is not clear that such master
curves accurately reflect customer requirements for product
properties. If in future faster process models are developed, it
may be possible to design control systems with the same actuation

7.7. Control of geometry in hydroforming

As with deep drawing, the uncertainties in both sheet and t
hydroforming arise from variations in material thickness, prop
ties and lubrication. However, in addition to the actua
available for deep drawing, hydroforming processes can 

exploit actuation of fluid pressure or volume flow. Sensing is m
constrained in hydroforming, as the fluid must be fully contai
and this has led to increased interest in off-line closed-loop con
as illustrated in Fig. 6.

Many researchers in hydroforming, such as [139], have wor
on the development of closed-loop control of the equipment
illustrated in Fig. 4, typically to ensure that these actuators tr
some specified target schedule. For example, the back-up press
can be controlled with respect to the punch stroke to maintain
uniform wall thickness [198] or the fluid volume can be contro
which may improve stability [64]. However, this form
equipment control is insensitive to product properties. Attem
to control properties have emerged only recently with 

incorporation of appropriate sensors.
One approach to adding product sensing to hydroforming is

use of a CCD camera to monitor the leakage of fluids between
workpiece and die [62]. This allows active control of the clamp
force at the minimum level required to contain the fluid, he
increasing the forming limits of the process. Direct measuremen
possible in the hydraulic bulge test illustrated in Fig. 33, where
tool is required to constrain the bulging sheet. Thermocouple
pair of CCD cameras and a pressure sensor in the fluid were use
monitor and control the temperature, strain, strain rate and st
state of the sheet during the bulge test to allow improved mate
characterisation [114].

In tube hydroforming of the ‘T’-shaped part in Fig. 34
displacement sensor measures form-filling deviations at the bas
the ‘T’ and a distributed sensor monitors the contact area betw
counter punch and the projected branch of the T. In a two st
control process, firstly the gap e and then the contact length Cl

Fig. 32. Typical scheme for closed-loop control of material flow in deep drawing.

Fig. 33. Hydraulic bulge test with on-line sensing of strain, strain-rate, tempera

and fluid pressure [114].
Fig. 34. Novel in-tool sensors in tube hydroforming [121].
and sensing which instead control directly for customer require-
ments, such as thickness or residual stress distributions.

Further equipment developments will allow an expansion in
the capability of closed-loop control in deep drawing. One option
that has emerged with the recent advances in servo-presses, is to
allow for complete control of the punch stroke. Early work on this
possibility [134], has focused on the benefits from lubrication
spreading during a partial withdrawal of the punch interrupting a
conventional stroke. Future developments may allow more
sophisticated combinations of punch motion and blank-holder
force control.
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rolled by fuzzy closed-loop control to match reference values
ch are predicted to minimise buckling and rupture [121].
wo attempts at distributed blank-holder control in sheet

roforming have been reported. The influence of variations in
blank holder force on the final product geometry was
itored [40] and a closed-loop control system built to control

raulically supported segmented binders for changing friction
itions during the process. The multi-point blank holder

em illustrated in Fig. 35 was used to control the material flow
e flange area. The draw-in of the sheet was measured locally

 tactile sensor system and controlled [182].
he difficulty of sensing the product in hydroforming has
ulated interest in off-line closed-loop control. For example,
t hydroforming was simulated to assess the distribution of
ning, wrinkling and die conformance achieved by a given
dule of blank-holder force, punch speed and hydraulic
sure. A fuzzy algorithm was then used to update the schedule
. Similar approaches for tube hydroforming have controlled the
dule using a fuzzy logic controller linked to a finite element
lation [146], or by stating the control problem as an

misation with the form of Eq. (2) with two objective functions;
for die filling and the other for thickness uniformity

. Several other groups worked on this approach in the period
–7 [86,103] and continue this work with the fuzzy-logic
oach illustrated in Fig. 36. The approach of Fig. 36, has also

 attempted with genetic algorithms to transform circular
s to square sections [1] and a closed-loop servo control system

 applied to control internal and external pressures and axial
ing in a double-sided tube hydroforming process to minimise
kle formation, based on sensing of axial feed [202].

in real time, the success of any controller depends on prediction of
the actuator response. In most flexible processes these responses
are strongly dependent on process history, and process models are
orders of magnitude slower than the actual process.

The most successful implementation of closed-loop control in a
flexible forming process is the earliest. A die was constructed as a
matrix of pins, with which part geometry can be stamped with
high accuracy [72]. The pins are set to some geometry, the part is
stamped and measured, and then based on the difference between
measured and intended geometry, the pins are adjusted. This
approach, repeated by many others [102] and illustrated in Fig. 37,
converges well. Unfortunately, the use of dies made from pins
although widely explored, has had little industrial interest due to
the poor surface quality created by the pins.

The same approach used by [72] was applied to laser bending of
sheet metal [48,33]. A first tool path is applied, the sheet geometry
compared to the target, and a corrective second path is designed.
The results demonstrate incremental improvement in geometric
accuracy, subject to the constraint that laser bending is one-sided
so, unlike the process in Fig. 37, cannot correct for over-bending.
The process has largely been explored within research laboratories
due to the very limited Gaussian curvature that can be achieved by
bending.

Twenty-five years of academic research into incremental sheet
forming has led to few industrial applications due to poor
geometric accuracy, high residual stresses and constrained
forming limits. A significant body of research has aimed to develop
strategies for tool-path design, for example through rigid body
transformation theory [117], feature based non-z-level slicing
algorithms [112] or the morph mapping strategy [16]. However,
these strategies have no feedback, so do not adapt when the
outcome of the strategy fails to achieve its intended target. Unlike
the uncertainties in deep drawing and sheet hydroforming which
relate to the workpiece, the uncertainties of incremental sheet
forming relate to the unpredictability of the process mechanics:
the response of the workpiece to the next movement of the
forming tool depends so strongly on the previous history of
deformation and the current location of the tool, that it is difficult
to simplify the process model in Eq. (1).

An off-line closed-loop control strategy was developed with
iterative correction of tool-paths [77], following the same idea as
[72] and in parallel with [48]. This was subsequently applied to a
double-sided incremental forming process, using the scheme
illustrated in Fig. 38 [122]. However, unlike the off-line approaches
that work successfully in tube hydroforming, the effect of these

Fig. 35. Multi-point blank holder system.

Fig. 37. Stamping with matrix of punches.

From [144].
Fig. 36. Off-line fuzzy logic control of tube hydroforming.

Fig. 38. Schematic of process-control in DSIF [122].
Control of geometry in flexible sheet forming processes

any flexible or incremental sheet forming processes have
 developed, with either increased actuation or mobile tools,

ing to create many part geometries without dedicated tooling.
primary source of uncertainty in these processes is model

r. Although the actuation can apparently provide great
bility and camera systems can sense complete part geometry
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approaches in incremental sheet forming may be disappointing.
For example in forming a flat-sided pyramid shape, after the first
tool-path completes, the faces of the pyramid will not be flat,
suggesting that in the next iteration the tool should press further
into the face, but this will not cause the face to flatten. Instead, the
face will be further stretched, and may be further from flat after the
intended corrective step.

The scheme in Fig. 38 is a form of off-line closed-loop control,
with measurement and tool-path design occurring after a
complete part has been formed. In contrast, the on-line closed-
loop system shown in Fig. 39, was developed with a stereo-vision
camera monitoring sheet geometry during the process [9]. Circular
cones were formed and the response of the workpiece to small
deviations from each planned circular tool path were parame-
terised linear spatial impulse functions. The geometry of the part
after each circular path was compared to the geometry predicted
by the spatial impulse functions, allowing adjustment of the
schedule for the next path. This approach was extended to allow
linearisation around a general tool path [71] thus representing the
process in the form of Eq. (4) and allowing a rapid solution of the
optimisation statement in Eq. (10). This led to a reduction in
geometric errors from �3 mm to �0.2 mm for a particular test part
but this approach to linearisation allows only small deviations from
the planned path.

The approach of [71] was applied to metal spinning, using a
finite element model of the spinning process to determine the
sensitivity of the workpiece geometry to the direction of each next
short increment of tool measurement, thus building up a tool path
step by step [142]. However, the model solution time was
prohibitively long, so this work is now continuing by an
exploration of tool-path parameterisation [143].

A surprising outcome of these attempts to control flexible sheet
forming processes is that despite great flexibility in actuation, and
easy access for the application of sensing, it is the unpredictability
of the mechanics of the flexible processes that inhibits the
implementation of control systems.

7.9. Control of geometry and grain size in open die forging

Open-die forging faces uncertainties in incoming material
geometry and microstructure (as well as segregations, voids and
porosity) and in workpiece temperature during the process. The
goal of the pass schedule is to place individual strokes so that the
strain distribution is relatively homogeneous and the strain is large

anticipate the internal microstructure of the part, and 

automatic assistant then suggests the next action to the opera
Fast models are a prerequisite for such a system. The equiva

strain for single strokes can be determined from the bite ratio 

height reduction [73]. The strain in the core fibre allowing
height reduction and bite ratio was calculated to find a minim
strain required to close pores in the core fibre [93]. These findi
were combined to develop an empirical squared sine function
the true strain [164] allowing a uniform equivalent strain in
core fibre [21].

The equivalent strain can be modelled as a cosine func
based on FEM results to improve the strain distribution
controlling the bite length [113], and the results from [73
with an equivalent strain equation [151]. Measurement dat
analysed semi-automatically and compared to ultrasonic 

spection results from forged ingots. The equivalent strain
the core can be predicted based on a Gaussian function 

cogging and upsetting [31,32]. This was later extended wit
temperature model allowing comparison of different p
schedules by using fast models of pore closure ratio, ene
consumption, etc. [54].

A commercially available measurement system LACAM FOR
was applied to monitor the equivalent strain in the core fibre
line during forging and to present it to the press operator [147].
strain models were enhanced by finite element results 

additionally a temperature model and grain size calculation w
applied [148,149]. The results correlated well with measured g
size after cooling. However the information displayed as wel
the interrelationship between the stroke sequence and 

resulting microstructure were too complex for use by opera
in practice, so numerical optimisation procedures and 

functions are under development [149].

7.10. Control of hot extrusion

In hot metal extrusion the exit temperature of the extrudat
uncertain due to variability in the pre-heating of equipment 

billet, and due to heat generated during forming [2]. However,
exit temperature can be measured and controlled by adjusting
ram speed, subject to constraints of maximum ram force and
need to avoid hot cracking [41].

The approach in Fig. 41 combining closed-loop control of

Fig. 39. Closed-loop control in incremental sheet forming [9].

Fig. 40. Vision of an on-line assistant system for open die forging [149].
line
eed,
sed
ch a
first

for
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enough to close porosity and initiate recrystallization while also
achieving the target geometry. Actuators allow selection of the
location and depth of each stroke. Surface geometry and
temperatures can be sensed, to some extent, but the quality of
the product is largely determined by the microstructure at its core.
Control is currently achieved by skilled operators, but operator-
assistant systems are being developed to provide predictive
information on core microstructure.

Long solution times and model inaccuracy preclude automatic
closed-loop control at present, but Fig. 40 proposes a ‘man in the
loop’ control system. Sensing and an observer are used to
ram speed during a batch run of the extrusion process with on-
identification of the response of the exit temperature to ram sp
draws on a decade’s developments [20,84,136]. The results, ba
on simulation, demonstrate that by the second product in a bat
constant exit temperature can be maintained for all but the 

�20% of the billet length.
Temperature measurement at the die exit is essential 

controlling extrusion, and contactless measurement is challeng
for materials such as aluminium with low emissivity. Exis
options, particularly pyrometers that measure infrared radiatio
multiple spectral regions, have been reviewed [137]. Pressure 
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ion sensors, inserted behind the tool wall as shown in Fig. 42,
 also support improved control of extrusion in future [201]. A
cture of p shape is engraved into the tool wall and deforms in
onse to the pressure or friction on the tool surface. Novel
ation aiming to improve temperature control further includes
e cooling of the container or active cooling of the dies. The

on to make extrusion dies with conformal cooling channels by
tive manufacturing methods offers new potential for increas-
productivity in hot aluminium extrusion [78].

. Control of cold forging

he process of backward cup extrusion is subject to uncertain-
in material properties, geometry and variations due to both

reduced by around 20% compared to the conventional backward
cup extrusion process and cups with wall thickness below 1 mm
can be made [152].

In the cold forging process of Fig. 43, friction and therefore the
forming force is reduced by an oscillating ram motion that allows a
redistribution of lubrication [63]. Friction impedes axial material
flow and leads to an increased tip diameter, but this can be
controlled by the closed-loop system of Fig. 44.

The forming force is measured by a load cell, and the force
controller generates a forwards ram motion until the maximum
forming force is reached and then a back stroke. Numerical
simulations showed that a closed-loop force controller can deal
with uncertainties due to varying diameters in the incoming
feedstock without loss of accuracy in the final part geometry.

8. Discussion and outlook

The paper was motivated by the fact that all metal forming
processes must cope with uncertainties. The introduction also
noted that developments in the science of property prediction
creates opportunities to develop new advanced products.
Furthermore, the motivation to reduce the cost of small batch
production has stimulated development of new flexible process
designs, and these designs with increased actuation invite new
approaches to control. The evidence of the survey in Section 7
demonstrates that there is a rapidly growing activity around the
development of closed-loop control systems motivated by all
three of these drivers. By drawing together current experience and
presenting an overarching framework for the analysis of future
control systems, the authors hope this will stimulate further
growth in the area.

All of the applications reviewed in this paper have faced the
non-linearity of the processes they consider. Many have dealt with
this by linearising about a single operating point for the current

Fig. 41. Closed-loop control of ram speed in extrusion [135].

2. Sensors for hot extrusion: (a) sensors for pressure and friction and (b)

mentation to extrusion.

Fig. 43. Oscillating press system (left) and formed gear (right) [63].

Fig. 44. Control strategy for accuracy-optimised cold forged parts [63].
 and surface treatment of the feedstock. These uncertainties
t the elastic deformation of the tools and thus the thickness of
ottom of the cup. An additional counterpunch can be added to
onventional process [107] to track schedules of force, position

elocity, which are all monitored during forming. The distance
een punch and counterpunch is monitored and two trigger

ts are set. If the first trigger point is detected, the control
ches from position to velocity control, so that the difference
een punch and counterpunch velocity is reduced. If the

nd trigger is detected, the process stops. Experimental
stigations showed that with this approach the punch load is
product, with the parameters for the operating point either found
by on-line identification, or by some form of analytical or statistical
model. There has been widespread use of statistical models, such
as fuzzy-controllers or genetic algorithms, to capture the non-
linear variation in operating points. However, some authors have
also used more detailed off-line process models in order to
generate sensitivities for on-line use.

The majority of applications to date have aimed to control
either product geometry or avoid failure. The control of tempera-
ture is less common, but the example of microstructure control in
hot rolling in Section 7.4 demonstrates a pathway for future
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development. Emerging models of microstructure evolution
depend primarily on the history of strain, strain-rate and
temperature in the workpiece, and there are now sufficient
sensors to allow monitoring of these variables across the surfaces
of most workpieces. The development of operator-assisting
software for open-die forging [149] is an excellent demonstration
of how, in future, observers could be used to provide new feedback
about currently unobservable properties.

The framework of analysis set out in Section 3 created a basis for
analysing both temporal and spatial dynamics in metal forming
control systems. This approach has been used widely in rolling,
particularly for flatness control, but the survey has revealed
opportunities for extending this spatial approach to other applica-
tions. The development of segmented blank-holders for deep
drawing has so far been applied only to the control of material flow
in the flange. However, the growing array of sensors available to this
process suggests that a more sophisticated spatial characterisation
of the workpiece is possible, and this creates a richer opportunity for
control system development. For other processes specifically
designed for flexibility, the opportunity to move actuators across
the space of the workpiece creates a high spatial bandwidth, which
to date has been difficult to exploit due to complex process
mechanics. However future machine designs may be able to
maintain mobile tools and actuator flexibility while creating more
predictable process responses (spatial impulse functions) which
would also enable a richer approach to spatial control.

This paper has aimed to complement its predecessor [177] to
demonstrate the breadth of opportunity for research and
development in the prediction and control of product properties
in metal forming. The scientific understanding of property
prediction is growing rapidly, reducing uncertainty about process
outcomes. Where this prediction can be made sufficiently rapidly,
existing processes may now be controlled to achieve higher
product specifications. New metal forming processes can also be
designed to enable the efficient application of the approach to
closed-loop of properties set out in this paper.
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[111] Löbbe C, Hoppe C, Becker C, Tekkaya AE (2015) Closed loop springback
control in progressive die bending by induction heating. International Journal
of Precision Engineering and Manufacturing 16(12):2441–2449.

[112] Lu B, Chen J, Ou H, Cao J (2013) Feature-Based Tool Path Generation Approach
for Incremental Sheet Forming Process. Journal of Materials Processing Tech-
nology 213:1221–1233.
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