18 research outputs found

    A note on the probability distribution function of the surface electromyogram signal

    Get PDF
    AbstractThe probability density function (PDF) of the surface electromyogram (EMG) signals has been modelled with Gaussian and Laplacian distribution functions. However, a general consensus upon the PDF of the EMG signals is yet to be reached, because not only are there several biological factors that can influence this distribution function, but also different analysis techniques can lead to contradicting results. Here, we recorded the EMG signal at different isometric muscle contraction levels and characterised the probability distribution of the surface EMG signal with two statistical measures: bicoherence and kurtosis. Bicoherence analysis did not help to infer the PDF of measured EMG signals. In contrast, with kurtosis analysis we demonstrated that the EMG PDF at isometric, non-fatiguing, low contraction levels is super-Gaussian. Moreover, kurtosis analysis showed that as the contraction force increases the surface EMG PDF tends to a Gaussian distribution

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Get PDF
    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results

    Hit the thumb jack! using electromyography to augment the piano keyboard

    Get PDF
    Improvising on the piano keyboard requires extensive skill development, which may reduce the feeling of immersion and flow for amateur players. However, being able to add simple musical effects greatly boosts a player's ability to express their unique playing style. To simplify this process, we designed an electromyography-based (EMG) system which integrates seamlessly into normal play by allowing musicians to modulate sound pitch using their thumb. We conducted an exploratory user study where users played a predefined melody and improvised using our system and a standard pitch wheel. Interview responses and survey answers showed that the EMG-based system supported the players' musical flow. Additionally, interviews indicated the system's capabilities to foster player creativity, and that players enjoyed experimenting with the effect. Our work illustrates how EMG can support seamless integration into existing systems to extend the range of interactions provided by a given interface
    corecore