105 research outputs found

    Approches colloïdale et bio-inspirée en nanoplasmonique

    Get PDF
    Le confinement et le guidage de l'énergie lumineuse à l'échelle nanométrique dans des composants colloïdaux requiert le contrôle précis (i) de la morphologie des nanoparticules, (ii) de leur agencement spatial dans des architectures d'ordre supérieur et (iii) du couplage entre structures plasmoniques et molécules photoactives. Ce travail de thèse explore des approches nouvelles de synthèse, essentiellement bio-inspirées, de ces trois défis. Dans un premier temps, nous avons utilisé les principes de biominéralisation pour ajuster le couplage entre plasmon et fluorophore et ainsi contrôler l'exaltation de fluorescence. La fluorescence d'ensembles finis et organisés de fluorophores (porphyrines) appelé agrégats J est modulée par leur encapsulation dans une fine couche de silice d'épaisseur contrôlée (entre 2 ± 1 nm et 12 ± 1 nm) produite par minéralisation, suivie de l'accrochage de nanoparticules d'or ou d'argent. Les agrégats J servent de template à la minéralisation silicée qui renforce alors leur stabilité mécanique, permet d'adsorption spécifique de nanoparticules métalliques et joue le rôle d'espaceur diélectrique permettant une optimisation du couplage exciton-plasmon. L'exaltation de fluorescence par les plasmons a ainsi pu être optimisée à plus de 400% et 200% par conjugaison de particules d'argent et d'or respectivement sur les agrégats J minéralisés. Notre approche colloïdale ascendante pourrait contribuer à la conception de sondes optiques pour des applications capteurs ou en imagerie mais s'inscrit aussi dans la recherche de systèmes efficaces pour le traitement de l'information optique par intégrations de structures plasmoniques cristallines et d'absorbeurs /émetteurs moléculaires. Dans un deuxième temps, nous avons exploré de nouvelles méthodes de contrôle de la morphologie de nanoparticules métalliques et de leur auto-assemblage en utilisant des protéines artificielles appelées α-Repins. Le principal avantage de ces protéines artificielles est leur grande stabilité thermique et leur structure tridimensionnelle robuste et modulable par concaténation de portions de séquence tout en permettant une variabilité de certains acides aminés. Pour la première fois, ces protéines ont été utilisées comme agents directeurs de croissance de nanoparticules d'or, ce qui nous a permis de produire des particules sphériques, prismatiques triangulaires, des nanobâtonnets par effet template des protéines de formes différentes. Dans des conditions particulières, nous avons aussi pu produire des nanoparticules fluorescentes d'or de 2-6 nm de diamètre. Par ailleurs, des paires de protéines α-Repins, sélectionnées par évolution dirigée pour leur affinité mutuelle, ont été conjuguées à des populations différentes de nanoparticules. L'auto-assemblage massif et spontané des nanoparticules est alors induit lors du mélange de population portant des protéines complémentaires. Ces résultats constituent la première étape de la construction d'une approche généralisation dans laquelle des protéines artificielles peuvent être conçues et produites pour contrôler la structure cristalline et la morphologie de particules plasmoniques ou bien induire leur couplage spécifique avec d'autres particules fonctionnelles permettant ainsi d'envisager la construction d'architectures colloïdales plasmoniques complexes.Confinement and guiding of light energy at nanoscale in devices composed of colloidal building blocks, requires a precise control of (i) the morphology of the nanoparticles, (ii) their spatial organization into larger scale architectures and (iii) the coupling between plasmonic colloid and optically active. This thesis work explores new synthetic approaches, including bio-inspired ones, of these three challenges. As a first insight, we have employed biomineralization principles to tune the plasmon-fluorophore coupling in order to control the fluorescence enhancement. The fluorescence properties of a well-organized, finite ensemble of porphyrins called J-aggregates is modulated by the templated encapsulation of silica of controlled thickness, in the range of 2 ± 1 nm to 12 ± 1 nm, and its decoration with Au and Ag nanoparticles. Porphyrin J-aggregates act as templates for the silica mineralization, while the inorganic shell first provides a mechanical stability and also becomes a template for the specific binding Au or Ag nanoparticles with a dielectric spacing for optimal exciton-plasmon coupling. The metal-enhanced fluorescence can be optimized exceeding 400% and about 200% with the conjugation of Ag and Au nanoparticles on templated J-aggregates respectively. Such bottom-up templated constructions could contribute to the design of optical probes for sensing and imaging applications but also to the efficient integration of molecular absorbers and emitters into plasmonic devices for optical information processing. In the second part we explored new methods to control the morphology of metallic nanoparticles, and their self-assembly using artificial proteins called a-Repins. The main advantages of these artificial proteins are there high thermal stability and their well-defined and robust 3D structure, which can be modulated by concatenation of a portion of the sequence while preserving some variability for some amino acid positions. The direct chemical reaction of these a-Rep proteins with Au sol results in the particles of spherical triangular, rod and wire shaped morphology where proteins acts as a template. Also fluorescent nanoclusters of size 2-6nm has been obtained when a-Rep proteins are used as a stabilizing agents. Finally, pairs of a-Rep proteins with mutual affinity have been selected by phage display and conjugated with different population of nanoparticles. Massive and spontaneous self-assembly was triggered by mixing these two particle particles populations bearing complementary proteins. These results are the first steps of the development of a versatile biomolecular toolbox in which artificial proteins can be fully designed to either control the crystallographic structure and morphology of plasmonic nanoparticles or induce their specific coupling to other functional nanoparticles therefore allowing to construct plasmonic and metamaterials colloidal architectures

    High-Performance Planar Thin Film Thermochromic Window via Dynamic Optical Impedance Matching

    Get PDF
    Window coatings with dynamic solar transmittance represent an excellent opportunity to reduce building heating and cooling loads, which account for >40% of energy consumed by the built environment. In particular, inorganic vanadium dioxide-based thermochromic coatings offer long lifetimes (>30 years) and can be passively integrated into a window system without additional electronics or power requirements. However, their limited solar modulation depth and wide phase-change hysteresis have traditionally restricted their ability to adapt to changing weather conditions. Here, we derive an optical performance limit for thin film vanadium dioxide coatings, which we find to be far beyond the current literature. Furthermore, we experimentally demonstrate a solution-processed multilayer thin film coating that uses temperature-dependent optical impedance matching to approach the optical performance limit. The thin film coating demonstrated has a record solar transmittance modulation of 21.8% while maintaining a high level of visible transparency (∼50%) and minimal hysteresis (∼10 °C). This work represents a step-change in thin film thermochromic window coatings and, as a result, establishes planar thin film vanadium dioxide as the most viable morphology for high-performance thermochromic windows

    Directed evolution of artificial repeat proteins as habit modifiers for the morphosynthesis of (111)-terminated gold nanocrystals

    Get PDF
    Natural biocomposites are shaped by proteins that have evolved to interact with inorganic materials. Protein directed evolution methods which mimic Darwinian evolution have proven highly successful to generate improved enzymes or therapeutic antibodies but have rarely been used to evolve protein–material interactions. Indeed, most reported studies have focused on short peptides and a wide range of oligopeptides with chemical binding affinity for inorganic materials have been uncovered by phage display methods. However, their small size and flexible unfolded structure prevent them from dictating the shape and crystallinity of the growing material. In the present work, a specific set of artificial repeat proteins (αRep), which exhibit highly stable 3D folding with a well-defined hypervariable interacting surface, is selected by directed evolution of a very efficient home-built protein library for their high and selective affinity for the Au(111) surface. The proteins are built from the extendable concatenation of self-compatible repeated motifs idealized from natural HEAT proteins. The high-yield synthesis of Au(111)-faceted nanostructures mediated by these αRep proteins demonstrates their chemical affinity and structural selectivity that endow them with high crystal habit modification performances. Importantly, we further exploit the protein shell spontaneously assembled on the nanocrystal facets to drive protein-mediated colloidal self-assembly and on-surface enzymatic catalysis. Our method constitutes a generic tool for producing nanocrystals with determined faceting, superior biocompatibility and versatile bio-functionalization towards plasmon-based devices and (bio)molecular sensors

    Infrared thermochromic antenna composite for self-adaptive thermoregulation

    Full text link
    Self-adaptive thermoregulation, the mechanism living organisms use to balance their temperature, holds great promise for decarbonizing cooling and heating processes. The functionality can be effectively emulated by engineering the thermal emissivity of materials to adapt to background temperature variations. Yet, solutions that marry large emissivity switching (Δϵ{\Delta}\epsilon) with scalability, cost-effectiveness and design freedom are still lacking. Here, we fill this gap by introducing infrared dipole antennas made of tunable thermochromic materials. We demonstrate that non-spherical antennas (rods, stars and flakes) made of vanadium-dioxide can exhibit a massive (~200-fold) increase in their absorption cross-section as temperature rises. Embedding these antennas in polymer films, or simply spraying them directly, creates free-form thermoregulation composites, featuring an outstanding Δϵ∼0.6{\Delta}\epsilon\sim0.6 in spectral ranges that can be tuned at will. Our research paves the way for versatile self-adaptive heat management solutions (coatings, fibers, membranes and films) that could find application in radiative-cooling, heat-sensing, thermal-camouflage, and other

    5-Carb­oxy-1,3-bis­(carb­oxy­meth­yl)-4-imidazolinium-4-carboxyl­ate

    Get PDF
    The title compound, C9H8N2O8, was obtained by the reaction of imidazole-4,5-dicarb­oxy­lic acid and 2-chloro­acetic acid. An intra­molecular O—H⋯O hydrogen bond occurs. The crystal packing is stabilized by intermolecular O—H⋯O and C—H⋯O hydrogen bonds, which link mol­ecules into a three-dimensional network

    The impact of bead milling on the thermodynamics and kinetics of the structural phase transition of VO2 particulate materials and their potential for use in thermochromic glazing

    Get PDF
    The thermodynamics and kinetics of the structural phase transition from monoclinic VO2 (M) to rutile VO2 (R) and vice versa were studied for particulate materials obtained by bead milling of VO2 (M) powder. Using wet bead milling, we decreased the particle size of VO2 (M) powder from ∼1 μm to 129 nm. With progressive milling, the switching enthalpy decreased from 47 J g−1 to 29 J g−1 due to a loss of crystallinity. The switching kinetics were studied using Friedman's differential isoconversional method. The activation energy |Eα| decreases with increasing difference between the actual temperature of the material and its switching temperature (T0). Furthermore, |Eα| decreases with progressive milling, and kinetic asymmetry is induced. For milled particulate materials, |Eα| is lower for the switch from VO2 (R) to VO2 (M) than for the opposite switch. For hydrothermally synthesized nanoparticles, |Eα| is in the same order of magnitude, albeit with inverse switching asymmetry. Latter may result from different defects that are introduced during both preparation techniques. Applying layers of milled particulate material to glass sheets yielded thermochromic coatings with luminous transmission of 40.7% and solar modulation of 8.3%. This demonstrates that milled VO2 particles have potential for use in energy efficient thermochromic windows

    Three isomorphous threefold interpenetrated 2D supramolecular frameworks: Synthesis, structure and sorption properties

    No full text
    Strategically designed and synthesized three isomorphous mononuclear complex, M(bpee)2(6-me-2,3-pyrdcH)2 [M = CoII (1), NiII (2) and FeII (3)] using the mixed ligand system. Structure determination reveals that each mononuclear fragment is engaged in bidirectional H-bonding (O–H···N) interactions forming a 2D supramolecular rectangular grid. Each rectangular grid undergoes threefold interpenetration resulting a 2D interpenetrated supramolecular framework with hydrophobic small pores. CO2 sorption at 195 K in 1 shows no occlusion in the pore surface, however hysteretic sorption observed with H2O and MeOH, correlated with the H-bonding interaction of H2O and MeOH with the pendant carboxylate O-atoms, which are aligned on the 2D surface
    • …
    corecore