227 research outputs found

    The architecture of an excitatory synapse.

    Get PDF

    Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry

    Get PDF
    It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is time-consuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes or clarified cell lysates. In the liquid chromatography coupled to mass spectrometry (LC-MS) approach described in this protocol, samples in MS-incompatible conditions are injected onto a short size-exclusion chromatography column. Proteins and protein complexes are separated from small molecule non-volatile buffer components using an aqueous, non-denaturing mobile phase. Eluted proteins and protein complexes are detected by the mass spectrometer after electrospray ionization. Mass spectra can inform regarding protein sample purity and oligomerization, and additional tandem mass spectra can help to further obtain information on protein complex subunits. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization

    Dreamkeeper: 3D Game Using Unreal Engine 4

    Get PDF
    The goal of this senior project was to combine our diverse skills to make a 3D game. The plot involves a young girl who has been given the powers to enter dreams and defeat nightmares. The 3D assets that we built and animated were made in Autodesk Maya. We used Unreal Engine 4 to piece together our assets and create the logic for the game. This document explains the technologies that we used, design choices we made, feedback from our player-testing, and work that we want to complete for the project in the future. Our final game demo features two levels, a combat systems that allows played to level up skills, and puzzles that allow the player to proceed to the final battle

    Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry

    Get PDF
    It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is time-consuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes or clarified cell lysates. In the liquid chromatography coupled to mass spectrometry (LC-MS) approach described in this protocol, samples in MS-incompatible conditions are injected onto a short size-exclusion chromatography column. Proteins and protein complexes are separated from small molecule non-volatile buffer components using an aqueous, non-denaturing mobile phase. Eluted proteins and protein complexes are detected by the mass spectrometer after electrospray ionization. Mass spectra can inform regarding protein sample purity and oligomerization, and additional tandem mass spectra can help to further obtain information on protein complex subunits. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization

    Promoter keyholes enable specific and persistent multi-gene expression programs in primary T cells without genome modification

    Get PDF
    Non-invasive epigenome editing is a promising strategy for engineering gene expression programs, yet potency, specificity, and persistence remain challenging. Here we show that effective epigenome editing is gated at single-base precision via 'keyhole' sites in endogenous regulatory DNA. Synthetic repressors targeting promoter keyholes can ablate gene expression in up to 99% of primary cells with single-gene specificity and can seamlessly repress multiple genes in combination. Transient exposure of primary T cells to keyhole repressors confers mitotically heritable silencing that persists to the limit of primary cultures in vitro and for at least 4 weeks in vivo, enabling manufacturing of cell products with enhanced therapeutic efficacy. DNA recognition and effector domains can be encoded as separate proteins that reassemble at keyhole sites and function with the same efficiency as single chain effectors, enabling gated control and rapid screening for novel functional domains that modulate endogenous gene expression patterns. Our results provide a powerful and exponentially flexible system for programming gene expression and therapeutic cell products

    The GTPase Rab26 links synaptic vesicles to the autophagy pathway.

    Get PDF
    Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles
    corecore