Using Chandra X-ray and VLA radio data, we investigate the scaling
relationship between jet power, P_jet, and synchrotron luminosity, P_rad. We
expand the sample presented in Birzan et al. (2008) to lower radio power by
incorporating measurements for 21 gEs to determine if the Birzan et al. (2008)
P_jet-P_rad scaling relations are continuous in form and scatter from giant
elliptical galaxies (gEs) up to brightest cluster galaxies (BCGs). We find a
mean scaling relation of P_jet approximately 5.8x10^43 (P_rad/10^40)^(0.70)
erg/s which is continuous over ~6-8 decades in P_jet and P_rad with a scatter
of approximately 0.7 dex. Our mean scaling relationship is consistent with the
model presented in Willott et al. (1999) if the typical fraction of lobe energy
in non-radiating particles to that in relativistic electrons is > 100. We
identify several gEs whose radio luminosities are unusually large for their jet
powers and have radio sources which extend well beyond the densest parts of
their X-ray halos. We suggest that these radio sources are unusually luminous
because they were unable to entrain appreciable amounts of gas.Comment: Accepted for publication in the Astrophysical Journal; 8 pages, 3
color figures, 1 tabl