64 research outputs found
Developing a Conceptual Design Engineering Toolbox and its Tools
In order to develop a successful product, a design engineer needs to pay attention to all relevant aspects of that product. Many tools are available, software, books, websites, and commercial services. To unlock these potentially useful sources of knowledge, we are developing C-DET, a toolbox for conceptual design engineering. The idea of C-DET is that designers are supported by a system that provides them with a knowledge portal on one hand, and a system to store their current work on the other. The knowledge portal is to help the designer to find the most appropriate sites, experts, tools etc. at a short notice. Such a toolbox offers opportunities to incorporate extra functionalities to support the design engineering work. One of these functionalities could be to help the designer to reach a balanced comprehension in his work. Furthermore C-DET enables researchers in the area of design engineering and design engineers themselves to find each other or their work earlier and more easily. Newly developed design tools that can be used by design engineers but have not yet been developed up to a commercial level could be linked to by C-DET. In this way these tools can be evaluated in an early stage by design engineers who would like to use them. This paper describes the first prototypes of C-DET, an example of the development of a design tool that enables designers to forecast the use process and an example of the future functionalities of C-DET such as balanced comprehension
A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model.
Background: Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods: In a single centre, open-label randomised trial, healthy malaria-naive participants (aged 18–35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes. Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen upon recrudescence. Male and female gametocyte densities were determined by molecular assays. Results: Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes appeared 8.5–12 days after the first detection of asexual parasites. Peak gametocyte densities and gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days (95% CI 1.5–3.9) compared to 5.1 days (95% CI 4.1–6.1) for female gametocytes. Exploratory mosquito feeding assays showed successful sporadic mosquito infections. There were no serious adverse events or significant differences in the occurrence and severity of adverse events between study arms (p=0.49 and p=0.28). Conclusions: The early appearance of gametocytes indicates gametocyte commitment during the first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-positive days. This model can be used to evaluate the effect of drugs and vaccines on gametocyte dynamics, and lays the foundation for fulfilling the critical unmet need to evaluate transmission-blocking interventions against falciparum malaria for downstream selection and clinical development. Funding: Funded by PATH Malaria Vaccine Initiative (MVI). Clinical trial number: NCT02836002
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
Fungal Planet description sheets: 1182–1283
Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.) and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA, Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes
Fungal Planet description sheets: 1182-1283
Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indoor oopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor(acid)soil, Entoloma pudens on plant debris, amongst grasses. [...]Leslie W.S. de Freitas and colleagues express their
gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) for scholarships provided to Leslie Freitas and for the research grant
provided to André Luiz Santiago; their contribution was financed by the
projects ‘Diversity of Mucoromycotina in the different ecosystems of the
Atlantic Rainforest of Pernambuco’ (FACEPE–First Projects Program PPP/
FACEPE/CNPq–APQ–0842-2.12/14) and ‘Biology of conservation of fungi
s.l. in areas of Atlantic Forest of Northeast Brazil’ (CNPq/ICMBio 421241/
2017-9) H.B. Lee was supported by the Graduate Program for the Undiscovered
Taxa of Korea (NIBR202130202). The study of O.V. Morozova, E.F.
Malysheva, V.F. Malysheva, I.V. Zmitrovich, and L.B. Kalinina was carried
out within the framework of a research project of the Komarov Botanical
Institute RAS (АААА-А19-119020890079-6) using equipment of its Core
Facility Centre ‘Cell and Molecular Technologies in Plant Science’. The work
of O. V. Morozova, L.B. Kalinina, T. Yu. Svetasheva, and E.A. Zvyagina was
financially supported by Russian Foundation for Basic Research project no.
20-04-00349. E.A. Zvyagina and T.Yu. Svetasheva are grateful to A.V. Alexandrova,
A.E. Kovalenko, A.S. Baykalova for the loan of specimens, T.Y.
James, E.F. Malysheva and V.F. Malysheva for sequencing. J.D. Reyes
acknowledges B. Dima for comparing the holotype sequence of Cortinarius
bonachei with the sequences in his database. A. Mateos and J.D. Reyes
acknowledge L. Quijada for reviewing the phylogeny and S. de la Peña-
Lastra and P. Alvarado for their support and help. Vladimir I. Kapitonov and
colleagues are grateful to Brigitta Kiss for help with their molecular studies.
This study was conducted under research projects of the Tobolsk Complex
Scientific Station of the Ural Branch of the Russian Academy of Sciences
(N АААА-А19-119011190112-5). E. Larsson acknowledges the Swedish
Taxonomy Initiative, SLU Artdatabanken, Uppsala (dha.2019.4.3-13). The
study of D.B. Raudabaugh and colleagues was supported by the Schmidt
Science Fellows, in partnership with the Rhodes Trust. Gregorio Delgado is
grateful to Michael Manning and Kamash Pillai (Eurofins EMLab P&K) for
provision of laboratory facilities. Jose G. Maciá-Vicente acknowledges support
from the German Research Foundation under grant MA7171/1-1, and
from the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer
Exzellenz (LOEWE) of the state of Hesse within the framework of the Cluster
for Integrative Fungal Research (IPF). Thanks are also due to the authorities
of the Cabañeros National Park and Los Alcornocales Natural Park
for granting the collection permit and for support during field work. The study
of Alina V. Alexandrova was carried out as part of the Scientific Project of
the State Order of the Government of Russian Federation to Lomonosov
Moscow State University No. 121032300081-7. Michał Gorczak was
financially supported by the Ministry of Science and Higher Education through
the Faculty of Biology, University of Warsaw intramural grant DSM 0117600-
13. M. Gorczak acknowledges M. Klemens for sharing a photo of the
Białowieża Forest logging site and M. Senderowicz for help with preparing
the illustration. Ivona Kautmanová and D. Szabóová were funded by the
Operational Program of Research and Development and co-financed with
the European Fund for Regional Development (EFRD). ITMS 26230120004:
‘Building of research and development infrastructure for investigation of
genetic biodiversity of organisms and joining IBOL initiative’. Ishika Bera,
Aniket Ghosh, Jorinde Nuytinck and Annemieke Verbeken are grateful to the
Director, Botanical Survey of India (Kolkata), Head of the Department of
Botany & Microbiology & USIC Dept. HNB Garhwal University, Srinagar,
Garhwal for providing research facilities. Ishika Bera and Aniket Ghosh acknowledge
the staff of the forest department of Arunachal Pradesh for facilitating
the macrofungal surveys to the restricted areas. Sergey Volobuev
was supported by the Russian Science Foundation (RSF project N 19-77-
00085). Aleksey V. Kachalkin and colleagues were supported by the Russian
Science Foundation (grant No. 19-74-10002). The study of Anna M.
Glushakova was carried out as part of the Scientific Project of the State
Order of the Government of Russian Federation to Lomonosov Moscow
State University No. 121040800174-6. Tracey V. Steinrucken and colleagues
were supported by AgriFutures Australia (Rural Industries Research and
Development Corporation), through funding from the Australian Government
Department of Agriculture, Water and the Environment, as part of its Rural
Research and Development for Profit program (PRJ-010527). Neven Matočec
and colleagues thank the Croatian Science Foundation for their financial
support under the project grant HRZZ-IP-2018-01-1736 (ForFungiDNA). Ana
Pošta thanks the Croatian Science Foundation for their support under the
grant HRZZ-2018-09-7081. The research of Milan Spetik and co-authors
was supported by Internal Grant of Mendel University in Brno No. IGAZF/
2021-SI1003. K.C. Rajeshkumar thanks SERB, the Department of Science
and Technology, Government of India for providing financial support
under the project CRG/2020/000668 and the Director, Agharkar Research
Institute for providing research facilities. Nikhil Ashtekar thanks CSIR-HRDG,
INDIA, for financial support under the SRF fellowship (09/670(0090)/2020-EMRI),
and acknowledges the support of the DIC Microscopy Facility, established
by Dr Karthick Balasubramanian, B&P (Plants) Group, ARI, Pune. The research
of Alla Eddine Mahamedi and co-authors was supported by project
No. CZ.02.1.01/0.0/0.0/16_017/0002334, Czech Republic. Tereza Tejklová
is thanked for providing useful literature. A. Polhorský and colleagues were
supported by the Operational Program of Research and Development and
co-financed with the European fund for Regional Development (EFRD), ITMS
26230120004: Building of research and development infrastructure for investigation
of genetic biodiversity of organisms and joining IBOL initiative.
Yu Pei Tan and colleagues thank R. Chen for her technical support. Ernest
Lacey thanks the Cooperative Research Centres Projects scheme (CRCPFIVE000119)
for its support. Suchada Mongkolsamrit and colleagues were
financially supported by the Platform Technology Management Section,
National Center for Genetic Engineering and Biotechnology (BIOTEC),
Project Grant No. P19-50231. Dilnora Gouliamova and colleagues were
supported by a grant from the Bulgarian Science Fund (KP-06-H31/19). The
research of Timofey A. Pankratov was supported by the Russian Foundation
for Basic Research (grant No. 19-04-00297a). Gabriel Moreno and colleagues
wish to express their gratitude to L. Monje and A. Pueblas of the Department
of Drawing and Scientific Photography at the University of Alcalá for their
help in the digital preparation of the photographs, and to J. Rejos, curator of
the AH herbarium, for his assistance with the specimens examined in the
present study. Vit Hubka was supported by the Charles University Research
Centre program No. 204069. Alena Kubátová was supported by The National
Programme on Conservation and Utilization of Microbial Genetic
Resources Important for Agriculture (Ministry of Agriculture of the Czech
Republic). The Kits van Waveren Foundation (Rijksherbariumfonds Dr E. Kits
van Waveren, Leiden, Netherlands) contributed substantially to the costs of
sequencing and travelling expenses for M. Noordeloos. The work of B. Dima
was supported by the ÚNKP-20-4 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research,
Development and Innovation Fund, and by the ELTE Thematic Excellence
Programme 2020 supported by the National Research, Development
and Innovation Office of Hungary (TKP2020-IKA-05). The Norwegian Entoloma
studies received funding from the Norwegian Biodiversity Information
Centre (NBIC), and the material was partly sequenced through NorBOL.
Gunnhild Marthinsen and Katriina Bendiksen (Natural History Museum,
University of Oslo, Norway) are acknowledged for performing the main parts
of the Entoloma barcoding work. Asunción Morte is grateful to AEI/FEDER,
UE (CGL2016-78946-R) and Fundación Séneca - Agencia de Ciencia y
Tecnología de la Región de Murcia (20866/PI/18) for financial support.
Vladimír Ostrý was supported by the Ministry of Health, Czech Republic -
conceptual development of research organization (National Institute of
Public Health – NIPH, IN 75010330). Konstanze Bensch (Westerdijk Fungal
Biodiversity Institute, Utrecht) is thanked for correcting the spelling of various
Latin epithets.Peer reviewe
Fungal Planet description sheets : 1182–1283
Novel species of fungi described in this study include those from various countries as follows: Algeria,
Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia,
Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus
australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of
Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae
on living leaves of Backhousia citriodora, Pseudosydowia indooroopillyensis, Pseudosydowia louisecottisiae
and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil.
Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified
fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag
with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface
of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil,
Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa
endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera
indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense
from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium
stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata
hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi
and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp.,
Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis
obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia
sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma
ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor (acid) soil, Entoloma pudens on
plant debris, amongst grasses. New Zealand, Amorocoelophoma neoregeliae from leaf spots of Neoregelia sp.,
Aquilomyces metrosideri and Septoriella callistemonis from stem discolouration and leaf spots of Metrosideros
sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexuomyces asteliae (incl. Flexuomyces gen. nov.)
and Mollisia asteliae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia banksii, Phaeosphaeria caricis-sectae from leaf spots of Carex secta. Norway, Cuphophyllus flavipesoides on soil
in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyaneolilacinum
on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butyriboletus parachinarensis on
soil in association with Quercus baloot. Poland, Hyalodendriella bialowiezensis on debris beneath fallen bark of
Norway spruce Picea abies. Russia, Bolbitius sibiricus on а moss covered rotting trunk of Populus tremula, Crepidotus
wasseri on debris of Populus tremula, Entoloma isborscanum on soil on calcareous grasslands, Entoloma
subcoracis on soil in subalpine grasslands, Hydropus lecythiocystis on rotted wood of Betula pendula, Meruliopsis
faginea on fallen dead branches of Fagus orientalis, Metschnikowia taurica from fruits of Ziziphus jujube, Suillus
praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens
on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium
burrowsianum on leaves of unidentified Poaceae, Castanediella senegaliae on dead pods of Senegalia
ataxacantha, Cladophialophora behniae on leaves of Behnia sp., Colletotrichum cliviigenum on leaves of Clivia
sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyxidicola on leaves of Heteropyxis
canescens, Lapidomyces aloidendricola as epiphyte on brown stem of Aloidendron dichotomum, Lasionectria
sansevieriae and Phaeosphaeriopsis sansevieriae on leaves of Sansevieria hyacinthoides, Lylea dalbergiae on
Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on
leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of
Ekebergia pterophylla, Paracymostachys euphorbiae (incl. Paracymostachys gen. nov.) on leaf litter of Euphorbia
ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf
litter of Syzygium chordatum, Parateichospora phoenicicola (incl. Parateichospora gen. nov.) on leaves of Phoenix
reclinata, Seiridium syzygii on twigs of Syzygium chordatum, Setophoma syzygii on leaves of Syzygium sp., Starmerella
xylocopis from larval feed of an Afrotropical bee Xylocopa caffra, Teratosphaeria combreti on leaf litter of
Combretum kraussii, Teratosphaericola leucadendri on leaves of Leucadendron sp., Toxicocladosporium pterocarpi
on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareus soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicicola (incl. Extremopsis
gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on
volcanic lapilii material, Tuber zambonelliae in calcareus soil. Sweden, Elaphomyces borealis on soil under Pinus
sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on inflorescence of Cyperus aromaticus. Thailand,
Simplicillium niveum on Ophiocordyceps camponoti-leonardi on underside of unidentified dicotyledonous leaf. USA,
Calonectria californiensis on leaves of Umbellularia californica, Exophiala spartinae from surface sterilised roots of
Spartina alterniflora, Neophaeococcomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella
aurantioflava on soil. Morphological and culture characteristics are supported by DNA barcodes.http://www.ingentaconnect.com/content/nhn/pimjBiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Production and Soil Scienc
Covalent bond force profile and cleavage in a single polymer chain
We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain
- …