680 research outputs found

    Urbanization and its impact on viticultural activity : the north oasis vine growers´s perception

    Get PDF
    Fil: Del Barrio, Lucía. Instituto Nacional de Tecnología Agropecuaria (Argentina). Estación Experimental Agropecuaria Mendoza.Fil: Pérez, Martín. Instituto Nacional de Tecnología Agropecuaria (Argentina). Estación Experimental Agropecuaria Mendoza.Fil: Dalmasso, Caterina. Instituto Nacional de Tecnología Agropecuaria (Argentina). Centro Regional Mendoza-San Juan.Fil: Silva Colomer, Jorge. Instituto Nacional de Tecnología Agropecuaria (Argentina). Estación Experimental Agropecuaria Mendoza.Fil: Bres, Emilce. Instituto Nacional de Tecnología Agropecuaria (Argentina). Estación Experimental Agropecuaria Mendoza.Fil: Van den Bosch, María Eugenia. Instituto Nacional de Tecnología Agropecuaria (Argentina). Estación Experimental Agropecuaria Mendoza.Fil: Lettelier, Dolores. Universidad Nacional de Cuyo. Facultad de Ciencias Agraria

    Neutralino Warm Dark Matter

    Get PDF
    In the supersymmetric (SUSY) standard model, the lightest neutralino may be the lightest SUSY particle (LSP), and it is is a candidate of the dark matter in the universe. The LSP dark matter might be produced by the non-thermal process such as heavy particle decay after decoupling of the thermal relic LSP. If the produced LSP is relativistic, and does not scatter enough in the thermal bath, the neutralino LSP may contribute as the warm dark matter (WDM) to wash out the small scale structure of O(0.1) Mpc. In this letter we calculate the energy reduction of the neutralino LSP in the thermal bath and study whether the LSP can be the WDM. If temperature of the production time T_I is smaller than 5MeV, the bino-like LSP can be the WDM and may contribute to the small-scale structure of O(0.1) Mpc. The Higgsino-like LSP might also work as the WDM if T_I< 2MeV. The wino-like LSP cannot be the WDM in the favoured parameter region.Comment: 13 pages. Some references are added in revised versio

    Density profiles of dark matter haloes on Galactic and Cluster scales

    Full text link
    In the present paper, we improve the "Extended Secondary Infall Model" (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical friction and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than 1011h1M\simeq 10^{11} h^{-1} M_{\odot} the slope α0\alpha \simeq 0 and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to α0.6\alpha \simeq 0.6 for a cluster of 1014h1M\simeq 10^{14} h^{-1} M_{\odot}. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.Comment: 26 pages; 4 figures A&A Accepte

    Density profile slope in Dwarfs and environment

    Full text link
    In the present paper, we study how the dark matter density profiles of dwarfs galaxies in the mass range 1081010M10^8-10^{10} M_{\odot} are modified by the interaction of the dwarf in study with the neighboring structures, and by changing baryon fraction in dwarfs. As already shown in Del Popolo (2009), the slope of density profile of inner halos flattens with decreasing halo mass and the profile is well approximated by a Burkert's profile. The analysis shows that dwarfs who suffered a smaller tidal torquing (consequently having smaller angular momentum) are characterized by steeper profiles with respect to dwarfs subject to higher torque, and similarly dwarfs having a smaller baryons fraction have also steeper profiles than those having a larger baryon fraction. In the case tidal torquing is shut down and baryons are not present, the density profile is very well approximated by an Einasto profile, similarly to dwarfs obtained in dissipationless N-body simulations. We then apply the result of the previous analysis to the dark matter halo rotation curves of three different dwarfs, namely NGC 2976, known to have a flat inner core, NGC 5949 having a profile intermediate between a cored and a cuspy one, and NGC 5963 having a cuspy profile. After calculating baryon fraction, which is 0.1\simeq 0.1 for the three galaxies, we fitted the rotation curves changing the value of angular momentum. NGC 2976, has an higher value of ordered angular momentum (λ0.04\lambda \simeq 0.04) with respect to NGC 5949 (λ0.025\lambda \simeq 0.025) and in the case of NGC 5963 the very steep profile can be obtained with a low value of λ\lambda (λ0.02\lambda \simeq 0.02) and also decreasing the value of the random angular momentum. In the case of NGC 2976 tidal interaction with M81 could have also influenced the inner part of the density profile.Comment: 15 pages; 5 figures; 1 tabl

    The Formation of a Disk Galaxy within a Growing Dark Halo

    Full text link
    We present a dynamical model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new 3D chemo-dynamical code, including dark matter, stars and a multi-phase ISM. The simulations start at redshift z=4.85 with a small dark halo in a LCDM universe and we follow the evolution until the present epoch. The energy release by massive stars and SNe prevents a rapid collapse of the baryonic matter and delays the maximum star formation until z=1. The galaxy forms radially from inside-out and vertically from halo to disk. The first galactic component that forms is the halo, followed by the bulge, the disk-halo transition region, and the disk. At z=1, a bar begins to form which later turns into a triaxial bulge. There is a pronounced deficiency of low-metallicity disk stars due to pre-enrichment of the disk ISM with metal-rich gas from the bulge and inner disk (G-dwarf problem). The mean rotation and the distribution of orbital eccentricities for all stars as a function of metallicity are not very different from those observed in the solar neighbourhood, showing that homogeneous collapse models are oversimplified. The approach presented here provides a detailed description of the formation and evolution of an isolated disk galaxy in a LCDM universe, yielding new information about the kinematical and chemical history of the stars and the ISM, but also about the evolution of the luminosity, the colours and the morphology of disk galaxies.Comment: 23 pages, LaTeX, 18 figures, A&A accepted, a high resolution version of the paper can be found at http://www.astro.unibas.ch/leute/ms.shtm

    Determination of masses of the central black holes in NGC524 and NGC2549 using Laser Guide Star Adaptive Optics

    Full text link
    [abridged] We present observations of NGC524 and NGC2549 with LGS AO obtained at GEMINI North telescope using the NIFS IFU in the K band. The purpose of these observations, together with previously obtained observations with the SAURON IFU, is to determine the masses (Mbh) of the supermassive black holes (SMBH). The targeted galaxies were chosen to have central light profiles showing a core (NGC524) and a cusp (NGC2549), to probe the feasibility of using the galaxy centre as the NGS required for LGS AO. We employ an innovative `open loop' technique. The data have spatial resolution of 0.23" and 0.17" FWHM, showing that high quality LGS AO observations of these objects are possible. We construct axisymmetric three-integral dynamical models which are constrained with both the NIFS and SAURON data. The best fitting models yield Mbh=(8.3 +2.7 -1.3) x 10^8 Msun for NGC524 and Mbh=(1.4 +0.2 -1.3) x 10^7 Msun for NGC2549 (all errors are at the 3 sigma CL). We demonstrate that the wide-field SAURON data play a crucial role in the M/L determination increasing the accuracy of M/L by a factor of at least 5, and constraining the upper limits on Mbh. The NIFS data are crucial in constraining the lower limits of Mbh and in combination with the large scale data reducing the uncertainty by a factor of 2 or more. We find that the orbital structure of NGC524 shows significant tangential anisotropy, while at larger radii both galaxies are consistent with having almost perfectly oblate velocity ellipsoids. Tangential anisotropy in NGC524 coincides with the size of SMBH sphere of influence and the core region in the light profile. We test the accuracy to which Mbh can be measured using seeings obtained from typical LGS AO observations, and conclude that for a typical conditions and Mbh the expected uncertainty is of the order of 50%.Comment: 19 pages, 14 figure

    On the physical origin of dark matter density profiles

    Full text link
    The radial mass distribution of dark matter haloes is investigated within the framework of the spherical infall model. We present a new formulation of spherical collapse including non-radial motions, and compare the analytical profiles with a set of high-resolution N-body simulations ranging from galactic to cluster scales. We argue that the dark matter density profile is entirely determined by the initial conditions, which are described by only two parameters: the height of the primordial peak and the smoothing scale. These are physically meaningful quantities in our model, related to the mass and formation time of the halo. Angular momentum is dominated by velocity dispersion, and it is responsible for the shape of the density profile near the centre. The phase-space density of our simulated haloes is well described by a power-law profile, rho/sigma^3 = 10^{1.46\pm0.04} (rho_c/Vvir^3) (r/Rvir)^{-1.90\pm0.05}. Setting the eccentricity of particle orbits according to the numerical results, our model is able to reproduce the mass distribution of individual haloes.Comment: 12 pages, 13 figures, submitted to MNRA

    On the universality of density profiles

    Full text link
    We use the secondary infall model described in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay, to study how in- ner slopes of relaxed LCDM dark matter (DM) halos with and without baryons (baryons+DM, and pure DM) depend on redshift and on halo mass. We apply the quoted method to structures on galactic scales and clusters of galaxies scales. We find that the inner logarithmic density slope, of dark matter halos with baryons has a significant dependence on halo mass and redshift with slopes ranging from 0 for dwarf galaxies to 0.4 for objects of M = 10^13M_solar and 0.94 for M = 10^15M_solar clusters of galaxies. Structures slopes increase with increasing redshift and this trend reduces going from galaxies to clusters. In the case of density profiles constituted just of dark matter the mass and redshift dependence of slope is very slight. In this last case, we used the Merrit et al. (2006) analysis who compared N-body density profiles with various parametric models finding systematic variation in profile shape with halo mass. This last analysis suggests that the galaxy-sized halos obtained with our model have a different shape parameter, i.e. a different mass distribution, than the cluster-sized halos, obtained with the same model. The results of the present paper argue against universality of density profiles constituted by dark matter and baryons and confirm claims of a systematic variation in profile shape with halo mass, for dark matter halos.Comment: 11 pages, 5 figure

    Ordenamiento territorial de una zona irrigada: el caso de la producción vitivinícola en el oasis norte de Mendoza

    Get PDF
    Las transformaciones territoriales asociadas a la metropolización del oasis se manifiestan diferencialmente en los distintos sectores agrícolas de Mendoza. La identificación de la tendencia de estas transformaciones permite diseñar instrumentos que se ajusten a cada situación particular procurando superar de este modo las políticas generalistas o de manual que, finalmente no son apropiadas por el territorio y por lo tanto no conducen a ninguna mejoría.EEA MendozaFil: Perez, Martin Alberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Perez, Martin Alberto. Universidad Nacional de Cuyo. Facultad de Filosofía y Letras; ArgentinaFil: Del Barrio, Lucia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Van Den Bosch, María Eugenia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Bres, Emilce Susana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Mendoza; ArgentinaFil: Dalmasso, Caterina. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Mendoza San Juan; Argentin

    In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections
    corecore