238 research outputs found

    Biodegradation of herbicide diuron by streptomycetes isolated from soil

    Full text link
    The diuron degrading activity of 17 streptomycete strains, obtained from agricultural and non-agricultural soils, was determined in the laboratory. All strains were identified as Streptomyces sp. by phenotypic characteristics and PCR-based assays. The strains were cultivated in liquid medium with diuron (4mgL(-1)) at 25 degrees C for 15 days. Biodegradation activity was deter-mined by high-performance liquid chromatography. The results indicated that all strains were able to degrade diuron, but to different amounts. Twelve strains degraded the herbicide by up to 50% and four of them by up to 70%. Strain A7-9, belonging to S. albidoflavus cluster, was the most efficient organism in the degradation of diuron, achieving 95% degradation after five days of incubation and no herbicide remained after 10 days. Overall, the strains isolated from agricultural soils exhibited higher degradation percentages and rates than those isolated from non-agricultural soils. Given the high degradation activity observed here, the streptomycete strains show a good potential for bioremediation of soils contaminated with diuron. (c) 2006 Elsevier Ltd. All rights reserved.Castillo López, MÁ.; Felis Reig, N.; Aragón Revuelta, P.; Cuesta Amat, G.; Sabater Marco, C. (2006). Biodegradation of herbicide diuron by streptomycetes isolated from soil. International Biodeterioration and Biodegradation. 58(3-4):196-202. doi:10.1016/j.ibiod.2006.06.020S196202583-

    Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors

    Get PDF
    © 2015 The Authors. Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for 20-25. days, reached steady states and produced 80-87. ΌW and 20-29. ΌW consistently for 3. weeks, respectively. When the substrates were swapped, the casein-enriched group showed faster response to acetate and higher power output, compared to the acetate-enriched group. Also when the substrates were switched back to their original groups, the power output of both groups returned to the previous levels more quickly than when the substrates were swapped the first time. During the substrate change, both MFC groups showed stable power output once they reached their steady states and the output of each group with different substrates was reproducible within the same group. Community level physiological profiling also revealed the possibility of manipulating anodic biofilm metabolisms through exposure to different feedstock conditions

    Novel Application of Cyclolipopeptide Amphisin: Feasibility Study as Additive to Remediate Polycyclic Aromatic Hydrocarbon (PAH) Contaminated Sediments

    Get PDF
    To decontaminate dredged harbor sediments by bioremediation or electromigration processes, adding biosurfactants could enhance the bioavailability or mobility of contaminants in an aqueous phase. Pure amphisin from Pseudomonas fluorescens DSS73 displays increased effectiveness in releasing polycyclic aromatic hydrocarbons (PAHs) strongly adsorbed to sediments when compared to a synthetic anionic surfactant. Amphisin production by the bacteria in the natural environment was also considered. DSS73’s growth is weakened by three model PAHs above saturation, but amphisin is still produced. Estuarine water feeding the dredged material disposal site of a Norman harbor (France) allows both P. fluorescens DSS73 growth and amphisin production

    Is bioaugmentation a feasible strategy for pollutant removal and site remediation?

    No full text
    Microorganisms can degrade numerous organic pollutants owing to their metabolic machinery and to their capacity to adapt to inhospitable environments. Thus, microorganisms are major players in site remediation. However, their efficiency depends on many factors, including the chemical nature and the concentration of pollutants, their availability to microorganisms, and the physicochemical characteristics of the environment. The capacity of a microbial population to degrade pollutants within an environmental matrix (e.g. soil, sediment, sludge or wastewater) can be enhanced either by stimulation of the indigenous microorganisms by addition of nutrients or electron acceptors (biostimulation) or by the introduction of specific microorganisms to the local population (bioaugmentation). Although it has been practiced in agriculture and in wastewater treatment for years, bioaugmentation is still experimental. Many factors (e.g. predation, competition or sorption) conspire against it. However, several strategies are currently being explored to make bioaugmentation a successful technology in sites that lack significant populations of biodegrading microorganisms. Under optimal local conditions, the rate of pollutant degradation might increase upon addition of an inoculant to remediate a chemical spill; however, the most successful cases of bioaugmentation occur in confined systems, such as bioreactors in which the conditions can be controlled to favour survival and prolonged activity of the exogenous microbial population

    Anaerobic dechlorinating bacteria.

    No full text
    Anaerobic dehalogenation is attracting great interest since it opens new research horizons based on the novel biochemical mechanisms identified in this field such as halorespiration, i.e. the utilization of halogenated compounds as electron acceptors. Moreover, anaerobic bacteria seem to be more efficient than their aerobic counterparts in removing halogen atoms from polyhalogenated compounds. Thus, anaerobic dehalogenation can be considered as a promising means for bioremediation treatments of persistently polluted environments. In this line, identification of pure strains capable of dehalogenation will give important information about the diversity of organisms implicated in this process and also fundamental explanations of the diverse biochemical mechanisms involved. In light of these considerations, we chose to focus this review on the physiological descriptions, dechlorination activities, phylogenetic diversity, and potential biotechnological applications of these pure anaerobic strains capable of dehalogenation
    • 

    corecore